(6 pages) Reg. No. :		3.	3. In hyperfine splitting of hydrogen, the energy g between triplet and singlet state is				
Code No.: 7146	Sub. Code : PPHM 41		(a)	$5.884\times10^6\mathrm{ev}$	(b)	$6.88 \times 10^{-6} \text{ ev}$	
			(c)	8.55 × 10 ⁻⁶ ev	(d)	1 ev	
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.		4.	The first order correction to E , in first order stark				
Fourth Semester		effect is ————.					
Physics — Core			(a)	0	(b)	1	
QUANTUM MECHANICS — II			(c)	negative	(d)	infinite	
(For those who joined in July 2017 onwards) Time: Three hours Maximum: 75 marks		5.	 In adiabatic process, the perturbation is made sufficiently slow, then the state of the system remains ————. 				
PART A — $(10 \times 1 = 10 \text{ marks})$		100	(a)	different	(b)	same	
Answer ALL questions.			(c)	oscillates	(d)	none	
Choose the correct answer:		6.	6. In sudden approximation $H = H^{(0)}$ for ———.				
1. The value of matrix elements of L^2 , L_Z and L_{\pm} are			(a)	$t < \dot{t'}$	(b)	t > t'	
			(c)	t = t'	(d)	$t = \infty$	
(a) 0 (c) 1	(b) 2 (d) none	7.	Partial wave analysis is useful for the potential system of ———.				
2. The eigen values of L^2 are — fold degenerate.			(a)	symmetric	8 88		
			(b)	square wall			
(a) $(2l+1)$	(b) (2 <i>l</i> – 1)		(c) spherically symmetric				
(c) $(2l+1)^2$	(d) 2 <i>l</i>		(d)	free particle			
				Pas	ge 2	Code No.: 7146	

- Optical theorem states the conservation of 8.
 - energy (a)
 - momentum
 - probability (c)
 - scattering amplitude
- Klein-Gordan equation describes the particles of 9.

- zero
- Find out the total angular momentum due to the spin of a free particle
 - (a) $J = L + \left(\frac{\hbar}{2}\right)\sigma'$ (b) $J = L \left(\frac{\hbar}{2}\right)\sigma'$
 - (c) $J = \frac{\hbar}{2}\sigma'$ (d) J = 0

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

Write about the matrix representation of L^2 , L_Z and L_{\pm} with matrix elements.

Or

Give the importance of spin angular momentum in quantum theory and explain the spin states of an electron.

> Code No.: 7146 Page 3

Give any one application of non degenerate 12. (a) levels in time independent perturbation theory.

Or

- Determine the second order corrections $E_n^{(2)}$ and B. (2) in time independent perturbation theory.
- Explain the transition probability in time 13. (a) dependent perturbation theory.

Or

- Discuss about Sudden approximation.
- Find out the differential scattering cross 14. (a) section for a square well potential using Born approximation.

Or

- Derive the scattering amplitude interms of phase shift using partial wave analysis.
- Find the solution of Dirac's equation for a 15. (a) particle of potential V.

Or

Derive the Dirac's equation for hydrogen atom.

Page 4

Code No.: 7146

[P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Give the properties of angular momentum operators, commutation relations with x and p operators Hermitization process.

Or

- (b) Explain orbital angular momentum with quantum mechanical operators.
- (a) Discuss the first order stark effect in hydrogen.

Or

- (b) Explain the theory of non-degenerate energy levels in time independent perturbation theory.
- 18. (a) Discuss about harmonic perturbation.

Or

(b) Explain the semi classical theory of radiation.

Page 5 Code No.: 7146

 (a) Find the Scattering cross section in laboratory co-ordinates and compare it with center of mass system.

Or

- (b) Explain the scattering from a square well system using partial wave analysis.
- (a) Show that the orbital angular momentum is not conserved for a free particle.

Or

(b) Determine the eigen functions u(p) for a free particle.

Page 6 Code No.: 7146