Reg. No.:....

Code No.: 7752

Sub. Code: WMAM 12/ VMAC 12

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.

First Semester

Mathematics — Core

REAL ANALYSIS - I

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Absolute convergence of $\sum a_n$ implies
 - (a) Divergence
 - (b) Convergence
 - (c) $|a_n|$ diverges
 - (d) All

24. (a) State and prove Merten's theorem.

Or

- (b) Assume f has a continuous derivative of order n+1 in some open interval I containing c. Define $E_n(x)$ for x in I by $f(x) = \sum \frac{f^{(k)}(c)}{k!} (x-c)^k + E_n(x).$ Then prove that $E_n(x) = \frac{1}{n!} \int_{0}^{x} (x-t)^n f^{(n+1)}(t) dt$.
- 25. (a) State and prove the theorem on Cauchy condition for uniform convergence.

Or

(b) Discuss and prove three examples of sequences of real valued functions.

Page 10

Code No.: 7752

- The total variation $V_f(a,b) = 0$ if and only if f is - on [a,b]
 - Continuous
 - Constant
 - Variable
 - (d)
- A series $\sum a_n$ is conditionaly convergent if $\sum a_n$ converges but $\sum |a_n|$ ————
 - Converges
 - Conditionaly converges
 - Diverges
 - Both (a) and (b)
- If f and g belongs to $R(\alpha)$ where $\alpha \nearrow$ on [a,b] then the product fg
 - Does not belong to $R(\alpha)$
 - Belongs to $R(\alpha)$
 - Both (a) and (b)
 - None

Page 2 Code No.: 7752

- The length of the largest subinterval of the partition p is called as -
 - (a) modulus of p
 - (b) norm of p
 - (c) absolute value of p
- If a < b, then $\int_{a}^{b} f dx =$ —when ever $\int_{a}^{b} f dx$ exists.

- If α be continuous and $f \nearrow$ on [a,b], then there exists a point x_0 in [a,b] such that $\int_{a}^{b} f(x) d\alpha(x) = f(a) \int_{a}^{x_0} d\alpha(x) + -$
- (c) $f(a) \int_{a}^{b} d\alpha(x)$ (d) $\int_{b}^{x_0} d\alpha(x)$

Page 3

Code No.: 7752

- 8. One of the sufficient condition for the existence of the Riemann integral $\int_a^b f(x) dx$ is on [a,b].
 - (a) f is continuous
- b) f is not continuous
- (c) f is compact
- (d) All
- 9. If $f \in R$ and α a continuous function on [a,b] whose derivative α' is Riemann integral on [a,b]

then $\int_a^b f(x) d\alpha(x)$ — $\int_a^b f(x) \alpha'(x) dx$.

(a) =

(b) ≠

(c) <

- (d) >
- 10. A function f whose domain is $z^+ \times z^+$ is called a sequence.
 - (a) Convergent
- (b) Cauchy
- (c) Double
- (d) Single
- 11. The double series is said to to the sum a if $\lim_{p,q\to\infty} (S(pq)) = a$.
 - (a) Converge
- (b) Diverge
- (c) Oscillate
- (d) All

Page 4 Code No.: 7752

- 12. An infinite series of the form $a_0 + \sum_{n=1}^{\infty} a_n (z z_0)^n$ is called ———
 - (a) Exponential series
 - (b) Power series in $(z-z_0)$
 - (c) Trigonometric series in $(z-z_0)$
 - (d) Logarithmic series
- 13. If C is the accumulation point of S, then $\lim_{x\to c} \lim_{n\to\infty} f_n(x) = \frac{1}{c}$
 - (a) 0
 - (b) 1
 - (c) $\lim_{n\to\infty}\lim_{x\to c}f_n(x)$
 - (d) $\lim_{n\to\infty} f_n(c)$
- 14. A sequence $\{f_n\}$ is said to be _____ on S if there exists a constant M > 0 such that $|f_n(x) \le M|$ for all x in S and all n
 - (a) Uniformly bounded
 - (b) Converge uniformly
 - (c) Both (a) and (b)
 - (d) Diverge

Page 5 Code No.: 7752

- - (a) Not continuous
 - (b) Continuous
 - (c) Diverge
 - (d) Oscillate

PART B — $(5 \times 4 = 20 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

- 16. (a) Let f be of bounded variation on [a,b] Let $V(x) = V_f(a,x) \text{ if } a < x \le b, v(a) = 0 \text{ on } [a,b].$ Then prove the following.
 - (i) V is an increasing function on [a, b]
 - (ii) V-f is an increasing function on [a, b]

Or

(b) If f is continuous on [a, b] and if f' exists and is bounded in the interior, say $|f'(x)| \le A$ for all x in (a, b) then prove that f is of bounded variation on [a, b].

Page 6 Code No.: 7752

17. (a) Assume that $c \in (a, b)$ if two of the three integrals given below exist prove that the third also exists and we have $\int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha.$

Or

- (b) Let $\alpha
 ewline on [a, b]$ if $f \in R(\alpha)$ on [a, b] then show that $|f| \in R(\alpha)$ on [a, b] and $\left| \int_a^b f(x) \, d\alpha(x) \right| \le \int_a^b |f(x)| \, d\alpha(x).$
- 18. (a) State and prove second fundamental theorem of integral calculus.

Or

(b) Assume that α is continuous and that f on [a, b] then prove that there exists a point x_0 in [a, b] such that $\int_a^b f(x) \ d\alpha(x) = f(a) \int_a^{x_0} d\alpha(x) + f(b) \int_{x_0}^b d\alpha(x).$

Page 7 Code No.: 7752

19. (a) Let $a_n > 0$ then show that the product $\pi(1+a_n)$ converges iff the series $\sum a_n$ converges.

Or

- (b) Show that if a series is convergent with sum S, then it is also (C,1) summable with cesaro sum S.
- 20. (a) Assume that $f_n \to f$ uniformly on S. If each f_n is continuous at a point c of s, then prove that the limit function f is also continuous at C.

Or

(b) State and prove Dirichlet's test for uniform convergence.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

21. (a) State and prove Riemann's theorem on conditionally convergent series.

Or

(b) Let F be of bounded variation on [a, b] and assume that $C \in (a, b)$ then prove that f is of bounded variation on [a, c] and on [c, b] and $V_f(a, b) = V_f(a, c) + V_f(c, b)$.

Page 8 Code No.: 7752

- 22. (a) Assume that α ? on [a,b]. The prove that the following statement are equivalent.
 - (i) $f \in R(\alpha)$ on [a,b]
 - (ii) f satisfies riemann's condition with respect n of α on [a,b]
 - (iii) $\underline{I}(f,\alpha) = \overline{I}(f,\alpha)$.

Or

(b) If $f \in R(\alpha)$ on [a,b] then prove that $\alpha \in R(f)$ on [a,b] and

$$\int_{a}^{b} f(x) d\alpha(x) + \int_{a}^{b} \alpha(x) df(x) = f(b)\alpha(b)$$

 $-f(a)\alpha(a)$

23. (a) Assume that α is of bounded variation on [a,b]. Let V(x) denote the total variation of α on [a,x] if $a < x \le b$ and v(a) = 0 Let f be defined and bounded on [a,b] If $f \in R(\alpha)$ on [a,b] then prove that $f \in R(V)$ on [a,b].

Or

(b) Discuss the theorem on change of variable in a Riemann integral.

Page 9 Code No.: 7752