Reg. No. :

Code No.: 6384

Sub. Code: ZPHM 12

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

First Semester

Physics - Core

MATHEMATICAL PHYSICS - I

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

- 1. The divergence of a vector field is always
 - (a) a vector
 - (b) a scalar
 - (c) some times a scalar and sometimes a vector
 - (d) neither a scalar nor a vector

- 2. If $\varphi = 4e^{(2x-y+z)}$, then grad φ at (1, 1, -1) is
 - (a) $4\left(2\hat{i}-\hat{j}+\hat{k}\right)$
 - (b) $2\hat{i} \hat{j} + \hat{k}$
 - (c) $8\hat{i} \hat{j} + 2\hat{k}$
 - (d) $3\hat{i} + 6\hat{j} + 9\hat{k}$
- 3. Which of the following is the Laguerre's equation?
 - (a) $\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} ny = 0$
 - (b) $\frac{d^2y}{dx^2} ny = 0$
 - (c) $x \frac{d^2y}{dx^2} + (1-x) \frac{dy}{dx} + ny = 0$
 - (d) $x\frac{d^2y}{dx^2} + ny = 0$
- 4. The value of $P_1(x)$ is
 - (a) 1

(b) 0

(c) x^2

(d) x

Page 2 Code No.: 6384

- Heat flow equation is 5.
 - (a) $\nabla^2 \varphi = 0$
 - (b) $\nabla^2 \varphi = \frac{1}{h^2} \frac{\partial \varphi}{\partial t}$
 - (c) $\nabla^2 \varphi = 1$
 - (d) $\nabla^2 \varphi = \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}$
- 6. Which of the following represents wave equation for the membrane?
 - (a) $\frac{\partial^2 u}{\partial v^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}$
 - (b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 1$
 - (c) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}$
 - (d) $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial x^2}$

Page 3 Code No.: 6384

- 7. If A_{ij} is anti symmetric tensor, then the component A_{11} is
 - (a) 1

(b) -1

(c) 2

- (d) 0
- The divergence of a contra variant vector A^{μ} is
 - (a) $A;_{\mu}^{\mu}$

(b) A; μ

(c) A

- (d) ∇φ
- From the pack of a 52 cards, one is drawn at random, the probability of getting a king is

 - (a) $\frac{2}{13}$ (b) $\frac{1}{169}$
 - (c) $\frac{25}{169}$
- (d) $\frac{1}{13}$
- The value of $\Sigma f(x-\overline{x})$ is
 - (a) negative
- (b) positive

(c) 0

(d) arbitrary

Page 4

Code No.: 6384

[P.T.O.]

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Check whether the following vector are linearly dependent or independent (1, 2, -3), (2, 5, 1), (-1, 1, 4).

Or

- (b) Find a unit vector perpendicular to the surface $x^2 + y^2 z^2 = 11$ at the point (4, 2, 3).
- 12. (a) Calculate the Wronskian of the functions $e^{(p-iq)x}$ and $e^{(p+iq)x}$.

Or

- (b) State and prove the generating function for Laguerre polynomials.
- 13. (a) Solve the heat flow equation.

Or

(b) A string of length l fixed at both ends is plucked at a distance d from one fixed point by an amount h. Find the displacement at any position at any instant of time.

Page 5 Code No.: 6384

14. (a) Show that the transformations of tensors form a group.

Or

- (b) Evaluate $\nabla \times \nabla \phi$.
- 15. (a) State and prove additive law of probability.

Or

(b) The following data are the number of seeds germinating out of 10 on damp filter for 80 sets of seeds. Fit a Binomial distribution to these data:

> x: 0 1 2 3 4 5 6 7 8 9 10 f: 6 20 23 12 8 6 0 0 0 0 0

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Verify divergence theorem for the vector $A=x^2\,\hat{i}+y^2\,\hat{j}+z^2\,\hat{k}\quad \text{taken over the cube}\\ 0\le x,\;y,\;z\le 1\,.$

Or

(b) State and prove Stoke's theorem.

Page 6 Code No.: 6384

17. (a) Solve $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$.

Or

(b) Show that

$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0 \text{ for } m \neq n$$

$$\int_{-1}^{1} [P_n(x)]^2 dx = \frac{2}{2n+1}.$$

18. (a) Solve the differential equation

$$2x\frac{\partial u}{\partial x} - 3y\frac{\partial u}{\partial y} = 0.$$

Or

- (b) A string of length l with fixed ends is plucked up at its centre a distance h from the position of equilibrium and then released. Find
 - (i) the displacement at any position at any time
 - (ii) the normal frequencies and normal modes for the vibrating string.

Page 7 Code No.: 6384

19. (a) A covariant tensor has components xy, $2y-x^2$, xz in rectangular coordinates. Find its covariant components in spherical coordinates.

Or

- (b) Derive Riemann Christoffel tensor.
- 20. (a) Calculate:
 - (i) the quartile
 - (ii) the mean and
 - (iii) the standard deviation wages from the following data:

Weakly wages 35-36 36-37 37-38 38-39 39-40 40-41 41-42 in dollars:

No. of wage 14 20 42 54 45 18 7 earners:

Or

(b) Derive the normal distribution as the limiting case of binomial distribution when p = q.

Page 8 Cod

Code No.: 6384