(7 pages) Reg. No.:	2. The sum of the squares of the roots of $x^3 + ax^2 - bx + c = 0$ is				
Code No.: 30732 E Sub. Code: EEMA 11/ FEMA 11		(a) a	a^2-2b	(b) $a^2 + 2b$	
		(c) b	c^2-2c	(d) $a^2 + 2c$	
B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024	3.	If the roots of $x^3 - 8x^2 + 19x - 12 = 0$ are 1, 3, 4 then the roots of $x^3 - 16x^2 + 76x - 96 = 0$ are			
First Semester		-			
Mathematics		(a) 1	, 3, 4		
Elective — ALGEBRA AND DIFFERENTIAL EQUATION				(d) 1, 9, 16	
	4.		rner's method and Newton's method are used to		
(For those who joined in July 2023 onwards)		District DAY			
Time: Three hours Maximum: 75 marks			equations		
PART A — $(10 \times 1 = 10 \text{ marks})$		(b) approximate values of the real roots of an equation			
Answer ALL the questions.		(c) a	(c) approximate values of the complex roots of quadratic equations		
Choose the correct answer.					
		(d) t	he positive real r	oots of an equation	
1. The smallest degree of an equation with rational coefficients, two of whose roots are $2+3i$ and $2-3i$ roots is	5.	If $\begin{vmatrix} x \\ 1 \end{vmatrix}$.	$\begin{vmatrix} 1 \\ x \end{vmatrix} = 0$ then x is		
(a) 2 (b) 4		(a)	$\frac{1}{2}$	(b) 1	
(c) 6 (d) 3			±1	(d) 0	
			Pag	e 2 Code No. : 30732 E	

- The eigen values of $\begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}$ are
 - (a) 2, 2
- (b) 2, 3

- (d) 3, 4
- The solution of $\frac{dy}{dx} = \frac{-y}{x}$ is
 - (a) xy = c (b) cx = y
 - (c) $c = x^2 y$ (d) x = cy
- The solution of $y = (x a)p p^2$ is
 - (a) $(x-a)c-c^2$ (b) $(x-c)a-c^2$ (c) $(x-a)c=c^2$ (d) $(x-a)a=c^2$
- $L(t^n) = \underline{\hspace{1cm}}.$
 - (a) $\frac{n!}{S^{n+1}}$ (b) $\frac{n!}{S^{t+1}}$

Page 3 Code No.: 30732 E

- 10. $L^{-1}(\sin at) =$ _____

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL the questions choosing either (a) or (b).

11. (a) Solve $x^4 - 4x^2 + 8x + 35 = 0$ given that $2+\sqrt{2i}$ is a root.

Or

- (b) If α, β, γ are the roots of $x^3 + px^2 + qx + r = 0$ find $(1+\alpha^2)(1+\beta^2)(1+\gamma^2).$
- 12. (a) Diminish the roots of $x^4 - 5x^3 + 7x^2 - 4x + 5 = 0$ by 2.

Or

- (b) Find the negative root of $x^3 2x + 5 = 0$ correct to two places of decimals.
- 13. (a) Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$ hence find A^{-1} .

Or

Code No.: 30732 E Page 4

[P.T.O.]

- (b) Find the sum and product of the eigen values of the matrix $\begin{pmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{pmatrix}$ without actually finding the eigen values.
- 14. (a) Solve $xyp^2 + p(3x^2 2y^2) 6xy = 0$.

Or

- (b) Solve $y = px + \frac{a}{p}$.
- 15. (a) Find $L(\sin^2 2t)$.

Or

(b) Find
$$L^{-1} \left(\frac{s}{(s^2 + a^2)^2} \right)$$
.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL the questions choosing either (a) or (b).

16. (a) Solve the equation $8x^4 - 90x^3 + 315x^2 - 405x + 162 = 0$ given that the roots are in G.P.

Or

(b) Solve $6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$.

Page 5 Code No.: 30732 E

- 17. (a) Find Newton's method the root of the equation
 - (i) $x^3 2x 2 = 0$ which is nearer to 2.
 - (ii) $x^3 2x 5 = 0$ which lies between 2 and 3 correct to 2 places of decimals.

Or

- (b) Apply Horner's method to find the root of the equation $x^3 9x^2 + 23x 14 = 0$ which lies between 4 and 5 correct to 2 places of decimals.
- 18. (a) Find the inverse of the matrix $\begin{pmatrix} 3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$ using Cayley-Hamilton theorem.

Or

- (b) Prove that the product of the eigen values is |A|.
- 19. (a) Solve $xp(3y^2 ax) = y(2y^2 ax)$.

Or

(b) Solve $(xp - y)^2 = a(1 + p^2)(x^2 + y^2)^{\frac{3}{2}}$.

Page 6 Code No.: 30732 E

20. (a) Find
$$L^{-1}\left(\frac{s^2-s+2}{s(s-3)(s+2)}\right)$$
.

Or

(b) Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$ given that $y = \frac{dy}{dt} = 0$ when t = 0.

Page 7 Code No.: 30732 E