Code	No.: 5384	Sı	ub. Code : ZMAM 42
M.Sc.	(CBCS) DEGREE EXA	MI	NATION, APRIL 2024.
	Fourth Se	mes	ster
	Mathematic	cs –	Core
	COMPLEX A	NA	LYSIS
	For those who joined i	n Ju	aly 2021 – 2022)
Time:	Three hours		Maximum: 75 marks
	PART A — (10 ×	1 =	10 marks)
	· Answer ALL	ques	stions.
Cl	noose the correct answ	er:	
	ne geometric serie verges for ————	es	$1+z+z^2+\ldots+z^n+\ldots$
(a)	$ z \ge 1$	(b)	z < 1
(c)	z =0	(d)	$ z\overline{z} =1$
2. The is	ne sum of the orders of equal to its————————————————————————————————————	the	zeros of a polynomial
(a)	degree	(b)	derivative

(d) order

integration

Reg. No.:

42

(7 pages)

3.	The mapping such that two curves which form an
	angle at z_0 are mapped upon curves forming the
	same angle in magnitude and direction is called
	at all points.

- (a) bijective (b) one-one
- (c) conformal . (d) onto
- The cross ratio (z_1, z_2, z_3, z_4) is the image of z_1 under the linear transformation which carries z_2, z_3, z_4 into –
 - (a) 1, 1, 1 (b) $1, 0, \infty$
 - (c) 1, 0, 1 (d) 1, 0, 0
- The length of circle $z = z(t) = a + \rho e^{it}$, $0 \le t \le 2\pi$ is
 - (a) 2π (b) $2\pi i$
 - (c) $2\pi\rho$ (d) 2ρ
- The integral $\int f dz$ with continuous f depends only on the end points of γ if and only if f is the — of an analytic function in Ω .
 - - derivative (b) integrand
 - (c) zero
- (d) discontinuous

Page 2 Code No.: 5384

- 7. A function which is analytic and bounded in the whole plane must reduce to ———
 - (a) constant
- (b) variable
- (c) integer
- (d) 0
- 8. If $\lim_{z \to a} f(z) = \infty$ then the point a is called a ——— of f(z).
 - (a) limit

(b) order

(c) pole

- (d) radius
- 9. A cycle γ is said to the region Ω if and only if $n(\gamma, a)$ is equal to 1 for all points $a \in \Omega$ and either undefined or 0 for all $a \notin \Omega$
 - (a) closed
- (b) bound

(c) open

- (d) compact
- 10. The of f(z) at an isolated singularity a is the unique number R such that f(z)-R/z-a the derivative of a single valued analytic function in an annulus $0 < |z-a| < \delta$.
 - (a) pole

(b) zero

- (c) order
- (d) residue

Page 3 Code No.: 5384

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL the questions, choosing either (a) or (b).

11. (a) Find the conjugate of the harmonic function $u = x^2 - y^2$.

Or

- (b) Derive Cauchy Riemann equations.
- 12. (a) Reflect the imaginary axis, the line $\alpha = y$ and the circle |z| = 1 in the circle |z 2| = 1.

Or

- (b) Explain the symmetry principle.
- 13. (a) Prove that $\int_{-r} f(z)dz = -\int_{r} f(z)dz$.

Or

(b) Let f(z) be analytic on the set R' obtained by omitting a finite number of interior points J_i from a rectangle R. If $\lim_{z \to J_i} (z - J_j) f(z) = 0$ for all j then prove that $\int_{\partial R} f(z) dz = 0$.

Page 4 Code No.: 5384 [P.T.O.]

14. (a) If the piecewise differentiable closed curve γ does not pass through the point a, then prove that the value of the integral $\int_{\gamma} \frac{dz}{z-a}$ is a multiple of $2\pi i$.

Or

- (b) Suppose that f(z) is analytic in an open disk Δ , γ be a closed curve in Δ . For any point a not on γ prove that $n(\gamma, a) \cdot f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z-a}$, where $n(\gamma, a)$ is the index of a with respect to γ .
- 15. (a) Find the residue of the function $\frac{e^z}{(z-a)(z-b)}.$

Or

(b) State and prove arguement principle.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL the questions, choosing either (a) or (b).

16. (a) State and prove Abel's theorem.

Or

(b) Derive Taylor – Maclaurin development with the assumption that f(z) has a power series expansion.

Page 5 Code No.: 5384

17. (a) State and prove the symmetric principle.

Or

- (b) Prove that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or on straight line.
- 18. (a) Prove that the line integral $\int_{\gamma} p dx + q dy$ defined in Ω depends only on the end points of γ if and only if there exists a function U(x,y) in Ω with the partial derivatives $\frac{\partial U}{\partial x} = p$, $\frac{\partial U}{\partial y} = q$.

Or

- (b) State and prove Cauchy's theorem for a rectangle.
- 19. (a) Prove that an analytic function comes arbitrarily close to any complex value in every neighborhood of an essential singularity.

Or

(b) State and prove Taylor's theorem.

Page 6 Code No. : 5384

Derive Cauchy residue theorem.

Or

(b) Compute $\int_{0}^{\pi} \frac{d\theta}{a + \cos \theta}$, a > 1.

Code No.: 5384 Page 7