(6 pages)

Reg. No. :

Code No.: 6392 Sub. Code: ZPHM 32

> M.Sc.(CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

> > Third Semester

Physics

ATOMIC AND MOLECULAR SPECTROSCOPY

(For those who joined in July 2021 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- Find the true statement
 - (a) An electron will not lose energy when jumping from the 1st orbit to the 3rd orbit
 - (b) An electron will not give energy when jumping from the 1st orbit to the 3rd orbit
 - (c) An electron will release energy when jumping from the 1st orbit to the 3rd orbit
 - (d) An electron will absorb energy when jumping from the 1st orbit to the 3rd orbit

- Calculate the ratio of the kinetic energy for the n = 2 electron for the Li atom to that of Be+ ion
 - (a) 9/16

(b) 3/4

(c) 1

- (d) ½
- Zeeman effect is the splitting of spectral line in the presence of -
 - (a) Electric Field
- (b) Magnetic Field
- (c) Inert Environment (d) Vacuum
- Zeeman Effect could not be proved by
 - (a) Quantum Mechanics
 - (b) Bohr's Model
 - (c) Hamiltonian operators
 - (d) L-S coupling
- The spectra caused in the infrared region by the transition in vibrational levels in different modes of vibrations are called
 - (a) Rotational spectra
 - (b) Electronic spectra
 - Vibrational spectra
 - (d) None of these

Code No.: 6392 Page 2

- The IR spectra of a compound helps in
 - (a) Proving the identity of compounds
 - (b) Showing the presence of certain functional groups in the molecule
 - (c) Neither of the above
 - (d) Both of the above
- Which of the following is not a type of NMR spectrometer?
 - (a) Minimal type
- (b) Maximal type
- (c) Multipurpose type
- (d) Wideline type
- Which of the following NMR spectrometers have 8. stressed reliability and ease of operation?
 - (a) Minimal type
- (b) Maximal type
- (c) Multipurpose type (d) Wideline type
- The elastic scattering of photons is called as
 - (a) Atmospheric scattering
 - (b) Rayleigh Scattering
 - (c) Conserved Scattering
 - (d) Raman Scattering
- 10. Which of the following cannot be conserved during Raman scattering?
 - (a) Total Energy
- (b) Momentum
- (c) Kinetic Energy
- (d) Electronic Energy

Code No.: 6392 Page 3

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) For the 2D_{5/2} state of the electron calculate the possible values of mi and Jz.

Or

- (b) Discuss in detail forbidden transitions and selection rules.
- (a) Explain the normal Zeeman effect.

Or

- (b) With a neat diagram explain the magnetic moment of the atom and 'g' factor.
- 13. (a) What is the change in the rotational constant B when hydrogen is replaced by deuterium in the hydrogen molecule?

Or

- (b) Explain about basic principles of ESR.
- 14. (a) What is the nuclear gn factor for 19F nucleus which has a magnetic moment of 2.6273 μ_N nuclear spin quantum number I = 1/2.

Or

(b) Explain the magnetic properties of nuclei.

Page 4 Code No.: 6392

[P.T.O.]

15. (a) Give the classical theory of Raman effect.

Or

(b) Distinguish between spontaneous and stimulated emission.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) A beam of silver atoms in a stern. Gerlach experiment obtained from an over heated to a temperature of 150k passes through an in homogeneous magnetic field having a field gradient of 20,000 gauss/cm (2 × 10⁴ gauss = 2wb/m²/ perpendicular to the beam. The pole faces are 10 cm long. What is the separation between the two components of the beam at the end of the magnet?

Or

- (b) Describe the stem and Gerlach experiment and indicate the importance of the results.
- 17. (a) State and explain the Paschen Back effect.

Or

(b) With a neat diagram explain the normal stark effect.

Page 5 Code No.: 6392

18. (a) The fundamental band for Hcl is central at 2886 cm⁻¹ Assuming that the internuclear distance is 1.276A° calculate the wave number of the first two lines of each of the P and R branches of Hcl.

Or

- (b) Explain in detail vibrating diatomic molecules.
- 19. (a) A particular NMR instrument operates at 30.256 MHz. What magnetic fields are required to bring a proton nucleus and 13_c nucleus to resonance at this frequency? Magnetic moment of proton= $2.7927~\mu_N$ and magnetic moment of $13_c = 0.7022~\mu_N$.

Or

- (b) With a neat block diagram explain the ESR spectrometer.
- 20. (a) Obtain the rate equations of a two and three level laser.

Or

(b) Describe the rotational Raman spectra for symmetric top molecules.

Page 6 Code No.: 6392