(6 pages) Reg. No.:....

Code No.: 10482 E Sub. Code: CACA 21

B.C.A. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Second Semester

Computer Applications - Allied

MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

(For those who joined in July 2021 onwards)

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

- For any two sets A and B, A B =
 - (a) $(A \cup B) B$
- (b) $(A \cup B) A$
- (c) $(A \cap B) B$
- (d) $(A \cap B) A$
- For any three sets A, B, C

 $A \cup B = A \cup C$ and $A \cap B = A \cap C$

implies

- (a) A = B
- (b) A = C
- (c) B=C
- (d) A = B = C

- Set of all equivalence classes given an equivalence relation is called _
 - (a) Partition Set
- (b) Quotient Set
- (c) Closure Set
- (d) Equivalent Set
- The function $f: N \to N$, given by f(x) = 2x is
 - (a) one-one but not onto
 - (b) one-one and onto
 - (c) neither one-one nor onto
 - (d) not one-one but onto
- A compound statement formed by combining two statements using the words "if - then" is
 - (a) Tautology
- (b) Contradiction
- (c) Conditional
- (d) Bi-conditional
- Which of the following is correct?

(a)
$$A \to (B \lor C) \Leftrightarrow (A \land B) \to C$$

(b)
$$A \to (B \lor C) \Leftrightarrow (A \land \neg B) \to \neg C$$

(c)
$$A \to (B \lor \neg C) \Leftrightarrow (A \land \neg B) \to C$$

(d)
$$A \rightarrow (B \lor C) \Leftrightarrow (A \land B) \rightarrow C$$

Page 2 Code No.: 10482 E

- Graph with only one vertex and no edges is alled graph. (a) Trivial (b) Pseudo (c) Null (d) Isolated Two vertices are _____ if they are end vertices of the same edge. (a) Disjoint (b) Adjacent (d) Incident (c) Bipartite
- A connected undirected graph is Eulerian if every graph vertex has _____ degree. (a) Even (b) n-1

(c) Odd

- (d) n
- 10. The number of non-pendant vertices in a binary tree is _
 - (a) (n+1)/2
- (b) N

(c) n/2

(d) (n-1)/2

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions by choosing (a) or (b).

Each answer should not exceed 250 words.

(a) Show that $A \cup (B \cup C) = (A \cup B) \cup C$.

(b) Let $S = \{a, b, c, d, e\}$. Find the equivalence by the partition relation induced $\{\{a,b\},\{c\},\{d,e\}\}.$

Page 3 Code No.: 10482 E

12. (a) Give the types of functions.

Or

- (b) If $f: X \to Y$, $g: Y \to Z$ and $h: Z \to S$ are functions, then show that $h \circ (g \circ f) = (h \circ g) \circ f$.
- 13. (a) What is disjunction? Draw the truth table for disjunction.

Or

- (b) Construct truth table for $(P \to Q) \lor (Q \to P).$
- 14. (a) Prove that the number of vertices of odd degree in a graph G is always even.

Or

- (b) Write a note on bipartite graph.
- 15. (a) What are connected and disconnected graphs?

Or

(b) Write a note on spanning trees.

Page 4 Code No.: 10482 E

[P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions by choosing (a) or (b).

Each answer should not exceed 600 words.

- 16. (a) Out of 60 students in a class, 25 play Badminton, 20 play Tennis and 30 play Volley ball. 12 play Badminton and Tennis, 9 play Tennis and Volley ball, 13 play Volley ball and Badminton, 5 play all the three games. Find how many of them play (i) None of the game (ii) Only Volley Ball (iii) Only Badminton.
 Or
 - (b) Prove that $A\Delta(B\Delta C) = (A\Delta B)\Delta C$.
- 17. (a) Prove that the intersection of any two equivalence relations is an equivalent relation.

Or

- (b) If $f: X \to Y$ and $g: Y \to Z$ are bijections, then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 18. (a) Show that

$$P \to (Q \to R) \Leftrightarrow P \to \bigcap Q \lor R \Leftrightarrow (P \land Q) \to R$$
.

(b) Obtain the principal disjunctive and conjunctive normal form for $(P \wedge Q) \vee (P \wedge Q \wedge R)$.

Page 5 Code No.: 10482 E

19. (a) Draw Peterson (10, 15) graph.

Or

- (b) Briefly explain adjacency matrix of a graph.
- 20. (a) What is an Euler graph? Mention its properties.

Or

(b) Draw a 5-level binary tree with 15 vertices.

Page 6 Code No.: 10482 E