(7 pages)

Reg. No.:....

Code No.: 7277

Sub. Code: ZESM 23

M.A. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Second Semester

Economics — Core

MATHEMATICAL METHODS

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 \times 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

- 1. If $A = \begin{bmatrix} 1 & 5 \\ 7 & 9 \end{bmatrix}$, A^T is
 - (a) $\begin{bmatrix} 1 & 7 \\ 5 & 9 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 1 \\ 9 & 7 \end{bmatrix}$

- Rank of a matrix $A = \begin{bmatrix} 5 & 2 \\ -2 & -3 \end{bmatrix}$ is

(c) 1

- 3. If $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$, minor of A will be

- Input-Output analysis is also known as
 - Input-Output table
 - Transaction matrix
 - Inter-Industry Analysis
 - None
- If $y = -11x^{-9}$, find dy/dx
 - (a) $-99x^{-10}$ (b)
- $-99x^{-8}$
- $99x^{-10}$

Page 2 Code No.: 7277

- If y = 9x + 2, dy/dx is
- (b) 9x

- $\int x^2 dx$ is
 - 9/3

7/3

1/3

- . (d) 2/3
- 8. Consumer's surplus can be calculated as
 - (a) $\int_{0}^{x_{0}} P_{0}x_{0} f(x)dx$ (b) $\int P_{0}x_{0} f(x)dx$ (c) $\int_{0}^{x_{0}} f(x) P_{0}x_{0}$ (d) $\int f(x)dx P_{0}x_{0}$
- 9. Linear programming was first formulated by
 - (a) Leontief
- Kantororich
- Dantzig
- Malthus
- The term programming refers to
 - planning
- investigating
- deciding
- activating (d)
- Page 3
- Code No.: 7277

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) What are the types of matrix?

- (b) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 6 & 7 \end{bmatrix}$, verify $(AB)^T = B^T A^T.$
- What are the limitations of Input-Output 12. (a) Analysis?

Or

- Solve the following equations by using Cramer's rule. $2x_1 + 3x_2 = 13$ $x_1 + 7x_2 = 23$
- Compute Marginal Productivity of Labour 13. (a) and Capital at K = 1 and L = 2 for the production function $X = 3KL^2 + 4K^2L + 2L + 2K.$

Or

Find first and second order partial derivatives of the following function $z = 2x^3 + 5x^2y + xy^2 + y^2$ and also verify that

> Code No.: 7277 Page 4

[P.T.O.]

14. (a) Evaluate $\int 9x^4(x^5+7)^8 dx$.

- (b) Evaluate $\int_{2}^{3} (x^2 + 5x + 7) dx$.
- 15. (a) What are the benefits linear programming?

Or

State briefly about the concept of linear programming.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

 $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 2 & -1 & 7 \\ 3 & 0 & 0 \\ 4 & -1 & -5 \end{bmatrix}.$

Or

(b) If $A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$, verify that $(AB)^T = B^T A^T.$

> Code No.: 7277 Page 5

Solve the following equations by using Cramer's Rule.

$$2x_1 + 3x_2 - x_3 = 9$$

$$x_1 + x_2 + x_3 = 9$$

$$3x_1 - x_2 - x_3 = -1$$

Or

In an economy of two industries A and B the data is given below in millions of rupees.

		Purchase by		Final Demand	Total Output
		A	В		
Sales by	A	12	6	6	24
	В	6	3	9	18

Determine the total output, if the final demand changes to 18 for A and 36 for B.

18. (a) If the demand function is Q = 100 - P and $C = \frac{1}{3}Q^3 - 7Q^2 + 111Q + 50$, find the firm's equilibrium price and output when profit is maximum.

Or

Explain the application of differentiation in Economics.

> Code No.: 7277 Page 6

Given the demand function P=8-2x and the supply function P = 2 + x, find the consumer's surplus and the Producer's surplus.

Or

- Compute Total, Average and Average variable costs for the marginal cost function $C = 4 + 7x - 5x^2$, if the total fixed cost is 40.
- Linear Explain the application 20. Programming in Indian Economy.

Or

Max. $Z = 45x_1 + 80x_2$

Subject to

$$5x_1 + 20x_2 \le 400$$

$$10x_1 + 15x_2 \le 450$$

and $x_1 \ge 0$, $x_2 \ge 0$.