(7 Pages)

Reg. No. :

Code No.: 5332

Sub. Code: PMAM 43

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2022

Fourth Semester

Mathematics - Core

ADVANCED ALGEBRA - II

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Suppose that L, K, F are there fields in the relation $L \supset K \supset F$. If [L:F] = 20, [K:f] = 4 then [L:K] is
 - (a) 80

(b) 16

(c) 5

(d) 24

- 2. $|Q(\sqrt{2}.\sqrt{3}):Q|$ is
 - (a) 2

(b) 4

(c) 6

- (d) 1
- 3. The degree of the splitting field of the polynomial $x^4 + x^2 + 1$ over the field of rational numbers is
 - (a) 4

(b) 1

(c) 2

- (d) 24
- 4. The extension K of F is a simple extension of F if
 - (a) K is the splitting field of F
 - (b) K = F(a) for some $a \in K$
 - (c) $K = F(\alpha)$ for some $\alpha \in F$
 - (d) $F = K(\alpha)$ for some $\alpha \in K$
- 5. Let K be a field and let F be a subfield of K. Then G(K,F) is
 - (a) the set of all automorphisms of K
 - (b) the set of all automorphimsms of K leaving every element of F fixed
 - (c) the set of all automorphisms of F leaving every element of K fixed
 - d) the set of all automorphism of F

Page 2 Code No. : 5332

- Let $K = \mathbb{C}$, $F = \mathbb{R}$. The G(K, F) is a group of order

- (d) 2
- If $\phi_n(x)$ is the n^{th} cyclotonic polynomial then $\phi_{1}(x) + \phi_{2}(x)$ is
- (b) $x^2 + x + 1$
- (c) x-1
- (d) 0
- Let F be a finite field with 25 elements and suppose that $F \subset K$ where K is also a finite field with [K:F]=5 then O(K) is
 - (a) 125

- (b) 5
- 255
- (d) 5²⁵
- If x = 1 i + j k then N(x) is
 - (a) 4

(c) 0

(d) 1+i-j+k

Code No.: 5332 Page 3

- 10. "Every positive integer can be expressed as the sum of squares of four integers" - This theorem is known as
 - Hurwitz theorem
 - Frobenius theorem
 - Wedderburn's theorem
 - Lagrange's theorem

PART B - $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Prove that "algebraic over algebraic is algebraic".

Or

- (b) If $a,b \in K$ are algebraic over F of degree m and n respectively, and if (m,n)=1, prove that F(a,b) is of degree mn over F.
- 12. (a) State and prove the reminder theorem.

Or

If F is of characteristic 0 and $f(x) \in f[x]$ is f'(x) = 0, prove that such $f(x) = \alpha \in F$.

> Code No.: 5332 Page 4 [P.T.O]

13. (a) If K is a field and if $\sigma_1, \sigma_2, ..., \sigma_n$ are distinct automorphisms of K, prove that it is impossible to find elements $a_1, a_2, ... a_n$ not all 0, in K such that $a_1\sigma_1(u) + a_2\sigma_2(u) + ... + a_n\sigma_n(u) = 0$ for all $u \in K$.

Or

- (b) If K = C and F = R, find G(K, F) and the fixed filed of G(K, F).
- 14. (a) Let F be a finite field with of elements and suppose that $F \subseteq K$ where K is also a finite field. Prove that K has q^n elements where n = [K:f].

Or

- (b) For every prime number p and every positive integer m, prove that there exists a filed having p^m elements.
- 15. (a) Let C be the field of complex numbers and suppose that the division ring D is algebraic over C. Prove that D = C.

Or

Page 5 Code No.: 5332

(b) Let Q be the division ring of real quaternions. If $x \in Q$, define N(x) and show that for all $x, y \in Q$, N(xy) = N(x)N(y).

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If L is a finite extension of K and if K is a finite extension of F, prove that L is a finite extension of F and [L:F] = [L:K][K:F].

Or

- (b) Prove that the element $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F.
- 17. (a) Prove that a polynomial of degree n over a field can have at most n roots in any extension field.

Or

(b) If $\alpha_1, \alpha_2, ..., \alpha_n$ are algebraic over F, prove that there is an element $c \in F(\alpha_1, \alpha_2, ..., \alpha_n)$ such that $F(c) = F(\alpha_1, \alpha_2, ..., \alpha_n)$.

Page 6 Code No.: 5332

If K is the splitting field of some polynomial over F, prove that K is a normal extension of

Or

- State and prove the fundamental theorem of Galois theory.
- After proving the necessary lemmas, prove 19. (a) that the multiplicative group of non zero elements of a finite field is cyclic.

Or

- Prove that a finite division ring is necessarily a commutative field.
- State and prove Frofenius theorem. 20.

Or

State and prove the left - division algorithm in the Hurwitz ring of integral quaternions.

> Code No.: 5332 Page 7