(7 pages) **Reg. No. :**

Code No.: 6853 Sub. Code: PMAM 42

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester

 ${\it Mathematics-Core}$

COMPLEX ANALYSIS

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

1. If
$$u + iv = z^3$$
, then $\frac{\partial u}{\partial x}$ is
(a) $3x^2 - 3y^2$ (b) $3x^2 + 3y^2$
(c) $6xy$ (d) $-6xy$
2. A function u which satisfies $\Delta u = 0$ is said to be
(a) Analytic (b) Harmonic
(c) Continuous (d) Homomorphic

- 3. A mapping by the conjugate of an analytic function with a nonvanishing derivative is said to be
 - (a) Conformal
 - (b) Holomorphic
 - (c) Indirectly conformal
 - (d) Conjugate

4. If
$$w = S(z) = \frac{az+b}{cz+d}$$
, then $z = S^{-1}(w)$ is

(a)
$$\frac{dw-b}{-cw+a}$$
 (b) $\frac{aw+b}{cw+d}$

(c)
$$\frac{dw+b}{-cw+a}$$
 (d) $\frac{-dw-b}{-cw+a}$

5. If $e^{h(\beta)} = 1$, then $h(\beta)$ must be

- (a) 0 (b) a multiple of $2\pi i$
- (c) a multiple of 2π (d) a multiple of πi

6. If C is the unit circle
$$|z| = 1$$
, then $\int_C \frac{e^z}{z} dz$ is

 (c) 2πi
 (d) 2πei

 Page 2
 Code No.: 6853

- "A function which is analytic and bounded in the whole plane must reduce to a constant" — This result is known as
 - (a) Liouville's Theorem
 - (b) Morera's Theorem
 - (c) Cauchy's Theorem
 - (d) The fundamental theorem of algebra
- 8. If f(z) is defined and continuous on a closed bounded set *E* and analytic on the interior of *E*, then the maximum of |f(z)| on *E* is assumed
 - (a) on the interior of E
 - (b) on the boundary of E
 - (c) on the set E
 - (d) on the closure of E

9. The residue of
$$\frac{e^z}{(z-a)^2}$$
 at $z = a$ is

- (a) e^0 (b) e
- (c) e^a (d) e^{a^2}
 - Page 3 Code No. : 6853

10. An integral of the form $\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx$ converges if and

only if

- (a) deg Q(x) is at least two units higher than deg P(x) and if no pole lies on the real axis
- (b) deg P(x) is at least two units higher than deg Q(x) and if no pole lies on the real axis
- (c) deg Q(x) is at least one unit higher than deg P(x) and if no pole lies on the real axis
- (d) deg P(x) = deg Q(x)

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Prove rigorously that the functions f(z) and $\overline{f(\overline{z})}$ are simultaneously analytic.

 \mathbf{Or}

- (b) State and prove Lucas's theorem.
- 12. (a) Given three distinct points z_2, z_3, z_4 in the extended plane, prove that there exists a unique linear transformation which carries them into 1, 0, ∞ in this order.

Or

(b) Find the linear transformation which carries 0, i, -i into 1, -1, 0.

Page 4 Code No. : 6853

[P.T.O.]

13. (a) State and prove Cauchy's integral formula.

Or

(b) If the piecewise differentiable closed curve γ does not pass through the point a, prove that the value of the integral ∫_γ dz/(z-a) is a multiple of 2πi.

14. (a) Compute $\int_{|z|=1} e^z z^{-n} dz$.

Or

- (b) State and prove the fundamental theorem of algebra.
- 15. (a) State and prove the residue theorem.

Or

- (b) Find the residue of $\frac{z+1}{z^2-2z}$ at its poles.
 - Page 5 Code No. : 6853

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Prove that $u = x^2 - y^2$ is harmonic and find its harmonic conjugate. Also find the corresponding analytic function.

Or

- (b) State and prove Abel's limit theorem.
- 17. (a) Obtain a necessary and sufficient condition under which a line integral depends only on the end points.

Or

- (b) If $T_1 z = \frac{z+2}{z+3}$, $T_2 z = \frac{z}{z+1}$, find $T_1 T_2 z$, $T_2 T_1 z$ and $T_1^{-1} T_2 z$.
- 18. (a) State and prove Cauchy's theorem for a rectangle.

(b) Compute
$$\int_{|z|=\rho} \frac{|dz|}{|z-a|^2}$$
 under the condition $|a| \neq \rho$.

19. (a) Prove that analytic function f(z) has derivatives of all orders which are analytic and can be represented by the formula $f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\xi) d\xi}{(\xi - z)^{n+1}}$.

Or

- (b) State and prove Taylor's theorem.
- 20. (a) State and prove the argument principle.

 \mathbf{Or}

(b) Evaluate $\int_{0}^{\infty} \frac{\cos x}{1+x^2} dx$.

Page 7 Code No. : 6853