Reg. No.:....

Code No.: 6878 Sub. Code: PCHM 23

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester

Chemistry - Core

PHYSICAL CHEMISTRY II

(For those who joined in July 2017 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL the questions.

Choose the correct answer:

- $1. \hspace{0.5cm} \hbox{Number} \hspace{0.5cm} \hbox{of} \hspace{0.5cm} \hbox{nodal} \hspace{0.5cm} \hbox{planes} \hspace{0.5cm} \hbox{for} \hspace{0.5cm} \hbox{f-orbital} \hspace{0.5cm} \hbox{are} \\$
 - (a) 3

(b) 2

(c) 1

- (d) 0
- 2. The distance between 3rd and 2nd orbit of hydrogen atom is ————
 - (a) 1.058×10^{-8} cm
- (b) 2.116×10^{-8} cm
- (c) 2.646×10^{-8} cm
- (d) 0.529×10^{-8} cm

3.		atom has four unp of this atom will be		electrons. The total	
	(a)	1	(b)	2	
	(c)	1.5	(d)	4	
4.	The lowest excited state of the helium atom has the term symbol				
	(a)	$2s^2$	(b)	$^3\mathrm{S}_1$	
	(c)	$^{1}\mathrm{S}_{0}$	(d)	He ⁺	
5.	The increase in the conductance of an electrolytic solution when the applied voltage has a very high frequency is called as				
	(a)	Falkenhagen effec	et		
	(b)	Wien effect			
	(c)	Stark effect			
	(d)	Raman effect			
6.	$\gamma_{\pm} = (\gamma_{+} \; \gamma_{-})^{1/2} \; ext{this equation defines}$				
	(a)	Bronsted equation	1		
	(b)	Tafel equation			
	(c)	Mean activitity co	efficie	nt	
	(d)	Onsager equation			
		Page	e 2	Code No. : 6878	

	Reduced at anode			
(b)	Reduced at cathode			
(c)	Oxidised at anode			
(d)	Oxidised at cathode			
Whi	ch of the following is not an example of a fue			
(a)	Hydrogen-oxygen cell			
(b)	Methyl-oxygen-alcohol cell			
(c)	Propane-oxygen cell			
(d)	Hexanone-oxygen cell			
(b) (c) (d)	Stark- Einstein law Beer- Lambert's law Faraday's law			
Which one of the following types of particles is the MOST highly penetrating to biological tissues?				
(-)	lpha particles			
(a)	0 1			
(a) (b)	eta particles			
` ′	β particles Neutrons			
(b)	, -			

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Derive the schrodinger equation for a linear harmonic oscillator.

Or

- (b) Write a note on space quantisation.
- 12. (a) Write the rules of mutual Exclusion principal for CO₂ molecule.

Or

- (b) What is Slater determinant? Give the Slater determinant for the two electron wave function of helium.
- 13. (a) Describe the Debye-Huckle-Onsagar equation. Mention is validity for dilute solutions.

Or

- (b) State the Debye-Falkenhagen and wein effects.
- 14. (a) Write a brief note on electrophoresis.

Or

(b) Give the principals and applications of polarography.

Page 4 **Code No.: 6878**

[P.T.O.]

15. (a) Write a comprehensive note on radiolysis of water.

Or

(b) Describe the photo physical pathways of excited molecular systems.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Derive the schrodinger equation.

Or

- (b) Give a brief account on quantum mechanical tunnelling.
- 17. (a) Give a brief account on Born Oppenheimer approximation.

Or

- (b) Calculate the delocalization energy for butadiene using HMO theory.
- 18. (a) Describe the Activity and Activity coefficient of non-ectrolytes.

Or

(b) Write the Debye-Huckel theory. Derive and explain Debye-Huckel Theory of strong electrolyte with experimental verification.

Page 5 Code No.: 6878

19. (a) Define corrosion. Give the types of corrosion. What are the factors influencing corrosion? How will you prevent the corrosion?

Or

- (b) What are fuel cells? How will you classify them? How do fuel cell works?
- 20. (a) Draw and discuss the Jablonski diagram.

Or

- (b) (i) Give the difference between radiation chemistry and photochemistry.
 - (ii) Mention the application of radiation chemistry.

Page 6 Code No.: 6878