(6 pages)

Reg. No.:....

Code No.: 20293 E Sub. Code: AMMA 52

> B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

> > Fifth Semester

Mathematics — Core

REAL ANALYSIS

(For those who joined in July 2020 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- In [0, 1] with usual metric, $B\left(0, \frac{1}{4}\right)$ is ———.
 - (a) $\left(-\frac{1}{4}, \frac{1}{4}\right)$ (b) $\left[0, \frac{1}{4}\right]$
- - (c) $\left[0, \frac{1}{4}\right]$ (d) $\left[0, \frac{1}{4}\right]$

- Which of the following subsets of R is not open?
 - (0, 1)

- $(1, 2) \cup (3, 4)$
- $f: M_1 \to M_2$ is continuous if and only if
 - (a) $x_n x = 0 \Rightarrow f(x_n) f(x) = 0$
 - (b) $x_n \to x \Rightarrow f(x_n) = f(x)$
 - (c) $(x_n) \to x \Rightarrow (f(x_n)) \to f(x)$
 - (d) $x_n x \to 0 \Rightarrow f(x_n x) \to 0$
- The function $f:(0,1)\to R$ defined by $f(x)=\frac{1}{x}$ is
 - not continuous
 - uniformly continuous
 - not uniformly continuous
 - neither continuous nor uniformly continuous
- If $A = (0, 1] \subseteq R$, then \overline{A} is
 - (0, 1)
- [0, 1]
- (0, 1]
- [0,1)

Page 2 Code No.: 20293 E

- 6. A connected subset of R is
 - (a) $[4, 7] \cup [8, 10]$
- (b) $[4, 6] \cup [5, 7]$
- (c) $[4,7)\cup(7,8)$
- (d) Q

- $7. \qquad \bigcup_{n=1}^{\infty} [0, n) = ?$
 - (a) $[0, \infty]$

- (b) (0,∞)
- (c) [0, ∞)
- (d) $(0,\infty]$
- 8. A compact subset of R is
 - (a) $[0, \infty)$
- (b) (3, 4)

(c) Q

- (d) [1, 2.8]
- 9. $\bigcup_{n=1}^{\infty} \left(0, \frac{1}{n}\right) = 0$
 - (a) (0,1)

(b) \$\display\$

(c) {0}

- (d) (0, 1]
- 10. In $R \times R$, $\overline{Q \times Q}$ is ———
 - (a) φ

- (b) Q^2
- (c) $R \times R$
- (d) $Z \times Z$
- Page 3 Code No.: 20293 E

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) In any metric space prove that each open ball is an open set.

Or

- (b) Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 12. (a) Show that the function $f: R \to R$ defined by

$$f(x) = \begin{cases} 0, & \text{if } x \text{ is irrational} \\ 1, & \text{if } x \text{ is rational} \end{cases}$$

is not continuous.

Or

- (b) Prove that $f: M_1 \to M_2$ is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq M_1$:
- 13. (a) If A is a connected subset of the metric space M. Prove that \overline{A} is connected.

Or

- (b) Show that the continuous image of a connected metric space is connected.
- 14. (a) Prove that continuous image of a compact metric space is compact.

Or

(b) If A is a compact subset of a metric space (M,d), prove that A is closed.

Page 4 Code No.: 20293 E

[P.T.O.]

15. (a) Let A be a subset of a metric space M. If A is totally bounded, show that A is bounded.

Or

(b) Show that a metric space is compact if and only if any family of closed sets with finite intersection property has non empty intersection.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) State and prove Cantor's interaction theorem.

Or

- (b) State and prove Baire's category theorem.
- 17. (a) (i) Let (M, d) be a metric space. Let $a \in M$, show that the function $f: M \to R$ defined by f(x) = d(x, a) is continuous.
 - (ii) Let (M, d) be any metric space. Let $f: M \to R$, $g: M \to R$ be two continuous functions. Prove that f+g is continuous.

Or

(b) Prove that $f: R \to R$ is continuous at $a \in R$ f and only if w(f, a) = 0.

Page 5 Code No.: 20293 E

18. (a) Prove that R is a connected metric space.

Or

- (b) (i) If A and B are connected subsets of a metric space M and $A \cap B = \phi$. Prove that $A \cup B$ is a connected set.
 - (ii) State and prove the Intermediate value theorem.
- 19. (a) State and prove Heine Borel Theorem.

Or

- (b) Let (M_1, d_1) be a compact metric space and (M_2, d_2) , be any metric space. If $f: M_1 \to M_2$ is continuous, prove that f is uniformly continuous on M.
- 20. (a) If A is a totally bounded set. Prove that \overline{A} is also totally bounded.

Or

(b) Prove that the metric space M is compact iff any family $\{A_{\alpha}\}$ of closed sets with finite intersection property has non empty intersection.

Page 6 Code No.: 20293 E