(6 pages)

Reg. No. :

Code No.: 8758

Sub. Code: KMAM 13

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2016.

First Semester

Mathematics

ORDINARY DIFFERENTIAL EQUATIONS

(For those who joined in July 2016 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- - (a) non linear
 - (b) linear
 - (c) linearly not, independent
 - (d) linearly independent

2.	If $R(x)$) is identica	lly zero,	then	the seco	nd o	rder
	linear	differntial	equation	ı is	reduces	to	the
	equation						

- (a) discontinuous
- (b) conitinuous
- (c) homogeneous
- (d) non homogeneous
- 3. A point that is not an ordinary point of the second order differential equation is called ———
 - (a) Ordinary point
- (b) Fixed point
- (c) multi point
- (d) Singular point
- - (a) Power

(b) taylor

(c) light

- (d) infinite
- - (a) fixed

(b) singular

(c) multi

- (d) regular
- 6. The procedure for finding the Frobenius series solution is known as the method of
 - (a) Taylors

- (b) Frobenius
- (c) Simmons
- (d) Infinites

Page 2 Code No.: 8758

- - (a) orthogonal
- (b) Bessel
- (c) polynomial
- (d) Mixed
- 8. The Bessel equation is -

(a)
$$x^2y'' + xy' + (x - p^2)y = 0$$

(b)
$$x^2y'' + xy' + (x^2 - p^2)y = 0$$

(c)
$$x^2y' + xy' + (x^2 - p^2)y = 0$$

(d)
$$x^2y + xy' + (x^2 - p^2)y = 0$$

- 9. By solving the linear system using anxillary equation. If m_1 and m_2 are distinct real numbers, then the roots are
 - (a) same

(b) distinct

(c) trivial

- (d) nontrivial
- - (a) Bessel
 - (b) linear
 - (c) Volterra's prey-predator
 - (d) Non linear

Page 3 Code No.: 8758

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Show that e^x and e^{-x} are linearly independent solutions of y'' - y' = 0 on any interval.

Or

- (b) The equation xy'' + 3y' = 0 has the obvious solution $y_1 = 1$. Find y_2 and the general solution.
- 12. (a) Show that polynomial and the function e^x are analytic at all points and give example.

Or

- (b) Solve the equation y' = x y, y(0) = 0.
- 13. (a) Find the singular point for the equation (3x+1)xy''-(x+1)y'+2y=0.

Or

- (b) Find the singular point for the equation $x^2y'' + (2-x)y' = 0$.
- 14. (a) Find the three terms of the Legendre series of $f(x) = e^x$.

Or

(b) Show that the change of variables $t = s^2$ leads to $\Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} t(-1/2) e(-t) dt$.

Page 4 Code No.: 8758 [P.T.O.]

15. (a) Prove that if the solutions of the homogeneous system are linearly independent on [a, b] then the system is the general solution of homogeneous solution of this interval

Or

(b) Show that the condition $a_2b_1 > 0$ is sufficient, but not necessary, for the system to have two real valued linearly independent solutions of the linear system.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Show that $y = c_1 e^x + c_2 x e^{2x}$ is the general solution of y'' - 4y' + 4y = 0 on any interval.

Or

- (b) Find the two linearly independent solution of $x^2y''-2y=0$ on the interval [1,2], determine the particular solution satisfying the initial conditions y(1)=1, y'(1)=8.
- 17. (a) Verify that if f(x) is analytic at x_0 and $f^{-1}(x)$ is continuous inverse, then $f^{-1}(x)$ is analytic at $f(x_0)$ if $f'(x_0) \neq 0$.

Or

(b) Write about series solution of first order equations with examples.

Page 5

Code No.: 8758

18. (a) Bessel equation of order p=1 is $x^2y'' + xy' + (x^2 - 1)y = 0$. Show that $m_1 - m_2 = 2$ and that the equation has only one Frobenius series solution. Then find it.

Or

(b) Find two independent Frobenius series solution of each of the following equations.

(i) xy'' + 2y' + xy = 0.

(ii) $xy'' - y' + 4x^3y = 0$

19. (a) Express $J_2(x)$, $J_3(x)$, $J_4(x)$ in terms of $J_0(x)$ and $J_1(x)$.

Or

- (b) Write the properties of Bessel function.
- 20. (a) Explain about linear systems.

Or

(b) Show that the Wronskian of the two solutions in distinct complex roots is given by $W(t) = (A_1B_2 - A_2B_1)e^{2at}$, and prove that $A_1B_2 - A_2B_1 \neq 0$.

Page 6 Code No.: 8758