(7 pages) Reg. No.:.... Code No.: 20065 E Sub. Code: SMMA 53/ AMMA 53 B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022. Fifth Semester Mathematics - Core STATICS (For those who joined in July 2017 onwards) Time: Three hours Maximum: 75 marks PART A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions. Choose the correct answer: If the angle between two equal forces P and P is α , then their resultant is -(a) 2P (b) $2P\cos\alpha$ (c) $2P\cos\frac{\alpha}{2}$

(d) 0

2.	If the resultant of two forces P and Q is at right
	angle to P , the angle between the forces is ———

(a)
$$\cos^{-1}(PQ)$$

(b)
$$\cos^{-1}\left(\frac{P}{Q}\right)$$

(c)
$$\cos^{-1}(-PQ)$$

(d)
$$\cos^{-1}\left(-\frac{P}{Q}\right)$$

- 3. Two paraller forces acting in the same direction are called forces.
 - (a) Like

(b) Unlike

(c) Direct

- (d) Opposite
- 4. The magnitude of the resultant of two unlike parallel forces is their
 - (a) difference
- (b) Sum
- (c) multiplication
- (d) ratio
- 5. If three coplanar forces acting on a rigid body keep it in equilibrium, then they must be ————
 - (a) concurrent
- (b) parallel
- (c) either (a) or (b)
- (d) zero
- 6. The coefficient of friction $\mu =$
 - (a) $\frac{F}{R}$

- (b) *FR*
- (c) $\tan^{-1}\left(\frac{F}{R}\right)$
- (d) $tan^{-1}(FR)$

Page 2 Code No.: 20065 E

- The relation between the coefficient of friction and the angle of friction is -
 - (a) $\tan \mu = \lambda$
- (b) $\tan \lambda = \mu$
- (c) $\tan (\lambda \mu) = 1$ (d) $\tan \lambda = \frac{1}{\mu}$
- The angle of repose of a rough inclined plane = -
 - (a) 0

(b) µ

(c) \(\lambda\)

- (d) $tan^{-1}\lambda$
- The intrinsic equation of the catenary is
 - (a) $s = c \tan \psi$
 - (b) $s = \tan \psi$
 - (c) $s = c \tan\left(\frac{x}{c}\right)$
 - (d) $s = \tan h \left(\frac{x}{c} \right)$
- 10. If the weight per unit length of the chain is constant, then the caternary is called the catenary.
 - (a) constant
- (b) same
- (c) common
- (d) unique

Page 3 Code No.: 20065 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) State and prove the triangle law of forces.

Or

- (b) Two forces act on a particle. If the sum and difference of the forces are at right angles to each other, show that the forces are of equal magnitude.
- 12. (a) Derive the condition of equilibrium of three coplanar paraller forces.

Or

- (b) Three like parallel forces, acting at the vertices of a triangle, have magnitudes proportional to the opposite sides. Show that their resultant passes through the incentre of the triangle.
- 13. (a) State the procedure to be followed in solving any statical problem.

Or

(b) A heavy uniform rod of length 2a rests partly within and partly without a smooth hemispherical bowl of radius r, fixed with its rim horizontal. If α is the inclination of the to the horizon, show that $2r\cos 2\alpha = a\cos \alpha$.

Page 4 Code No.: 20065 E

[P.T.O.]

14. (a) State the laws of friction.

Or

- (b) Write a short note on:
 - (i) Angle of friction
 - (ii) Cone of friction
- 15. (a) Derive the cartesian equation of a catenary.

Or

(b) State and prove any one geometrical property of a common catenary.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) State and prove Lami's theorem.

Or

(b) If 0 is the circumcentre of the triangle ABC and the forces P,Q,R acting along the lines OA, OB, OC respectively are in equilibrium, then prove that

$$P: Q: R = a^{2}(b^{2} + c^{2} - a^{2}): b^{2}(a^{2} + c^{2} - b^{2}): c^{2}(a^{2} + b^{2} - c^{2}).$$

Page 5 Code No.: 20065 E

17. (a) Force P,Q, R act along the sides BC, AC, BA respectively of an equilateral triangle. If their resultant is a force parallel to BC through the centroid of the triangle, prove that $Q = R = \frac{P}{2}$.

Or

- (b) State and prove Varigon's theorem.
- 18. (a) State and prove two Trigonometical theorems.

Or

- (b) A heavy uniform sphere rests touching two smooth inclined planes one of which is inclined at 60° to the horizontal. If the pressure on this plane is one half of the weight of the sphere, prove that the inclination of the other plane to the horizontal is 30°.
- 19. (a) A ladder 20 meters long with its centre of gravity 8 meters up from the bottom, weights 60 kg and rests at an angle of θ to the ground against a smooth vertical wall. The coefficient of friction between the ladder and the ground is $\frac{1}{2}$. Find the least value of θ which will enable a weighing 140 kg to reach the top with out the ladder slipping.

- (b) A body is at rest on a rough inclined plane and is acted upon by a force parallel to the plane. Find the limits between which the force must
- (a) Find the tension at any point of the catenary.

Or

(b) Explain the parabolic catenary.

Code No.: 20065 E