(6 P	Pages)							
(01	(6 Pages) Reg. No. :							
Co	de N	o.:30583 E	Sul	b. Code: AMCS 41				
В.5	Sc. (CI	BCS) DEGREE EX	AMINA	ATION, APRIL 2022				
		Fourth S	Semeste	er				
		Computer Sc	ience —	- Core				
		DATA STR	UCTU	RES				
	(For	those who joined	in July	2020 onwards)				
Tim	e : Th	ree hours		Maximum: 75 marks				
		PART A — (10	× 1 = 1	0 marks)				
		Answer AL	L quest	tions.				
	Cho	ose the correct ans	swer:					
1.	The efficiency of a sequential search is ————							
	(a)	O(n)	(b)	O(n*n)				
	(c)	O(log2n)	(d)	O(n*n*n)				
2.	In ——— hashing, the key is squared and the address is selected from the middle of the result.							
	(a)	Direct	(b)	Mid square				
	(c)	Subtraction	(d)	Digit extraction				

		4	D 11 1: 1 1
(a)	Circular	(p)	Double linked
(c)	Multi linked	(d)	Single linked
	a linked	list mea	ns going through t
list,	node by node an		
(a)	Search	(b)	Insert
(c)	Delete	(d)	Traversing
			list in which e made at one e
(a)	Queue	(b)	Trees
	Queue Graphs	(b)	Trees Stack
(c) Wh	Graphs	(d)	Stack lows deleting d
(c) Wh	Graphs ich data struc nents from front	(d)	Stack lows deleting darting at rear?
(c) Whi	Graphs ich data struc nents from front Stacks	(d) eture al and inse (b)	Stack lows deleting darting at rear?
(c) Whateler (a) (c) With	Graphs ich data struct nents from front Stacks Dequeue h ————————————————————————————————————	(d) eture al and insertion (b) (d) versal, bef the roo after the	Stack lows deleting derting at rear? Queues Binary search tree efore visiting the ret node is to be visit visit of the root no
(c) Whiteler (a) (c) With nod their right	Graphs ich data structionents from front Stacks Dequeue h tra e, left sub-tree on root node and	(d) eture al and inse (b) (d) versal, b f the roo after the root nod	Stack lows deleting derting at rear? Queues Binary search tree efore visiting the ret node is to be visit visit of the root no

An is a binary tree which stores an arithmetic expression.						
(a)	Heap tree	(b)	Huffman tree			
(c)	Expression tree	(d)	Decision tree			
A graph if it does not have any self loop or parallel edges is called ———— graph.						
(a)	simple	(b)	complete			
(c)	weighted	(d)	connected			
A graph is said to be ———————————————————————————————————						
(a)	simple	(b)	complete			
(c)	weighted	(d)	connected			
	(a) (c) A gr edge (a) (c) A gr adja (a)	(a) Heap tree (c) Expression tree A graph if it does not hedges is called (a) simple (c) weighted A graph is said to be— adjacent to every other	(a) Heap tree (b) (c) Expression tree (d) A graph if it does not have an edges is called grace (a) simple (b) (c) weighted (d) A graph is said to be adjacent to every other verte (a) simple (b)			

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) What is algorithm? What are the characteristics of a good algorithm?

Or

(b) Describe the various levels of data abstraction.

Page 3 Code No.: 30583 E

12. (a) Elaborate the basic operations on stack.

Or

- (b) How do you create a singly linked list in data structure? Explain.
- 13. (a) What is a binary tree? Explain the various representations of binary tree.

Or

- (b) Write a procedure for insertion into a max heap.
- 14. (a) Write an algorithm for all pairs shortest paths.

Or

- (b) Explain the concept of graph abstract data type.
- 15. (a) Summarize the insertion sort algorithm with example.

Or

(b) List out the advantages of external sorts.

Page 4 Code No.: 30583 E

[P.T.O]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Compare the space complexity and time complexity.

Or

- (b) Illustrate they array as an abstract data type.
- 17. (a) Write a procedure to add and delete an element to a stack.

Or

- (b) What is a queue? Explain the various operations performed on a queue.
- 18. (a) Write an algorithm to delete a particular node from binary search tree.

Or

(b) Explain the algorithm for preorder traversal of a binary tree.

Page 5 Code No.: 30583 E

19. (a) Compare the depth first search and breadth first search.

Or

- (b) Outline the concept of minimum cost spanning trees.
- 20. (a) Discuss the balanced two-way merge sort with example.

Or

(b) What are the different types of hash function? Explain.

Page 6 Code No.: 30583 E