Reg. No.:....

Code No.: 10106

Sub. Code: R 3 MA 61/ R 3 MC 61/B 3 MA 61/ B 3 MC 61

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2013.

Sixth Semester

Mathematics - Main

Paper XII — LINEAR ALGEBRA

(Also common to B.Sc. Maths with Computer Applications)

(For those who joined in July 2008 to 2011)

Time: Three hours

Maximum: 75 marks

PART A $-(10 \times 1 = 10 \text{ marks})$

Answer ALL the questions.

Choose the correct answer.

- 1. பின்வருவனவற்றுள் எது சரி?
 - (அ) R மீது R எனும் வெக்டர் வெளி C மீது C எனும் வெக்டர் வெளியின் உள்வெளியாகும்
 - (ஆ) R மீது C எனும் வெக்டர் வெளி C மீது C எனும் வெக்டர் வெளியின் உள்வெளியாகும்
 - (இ) R மீது R எனும் வெக்டர் வெளி R மீது C எனும் வெக்டர் வெளியின் உள்வெளியாகும்
 - (ஈ) மேற்கண்ட எதுவும் இல்லை

In an inner product space define norm and prove:

- (i) $\|\alpha x\| = \|\alpha\| \|x\|$
- (ii) $||x+y|| \le ||x|| + ||y||$.

Or

- (ஆ) (i) உள்பெருக்கல் வெளி V-யில் $S = \{v_1, v_2, \dots v_n\}$ என்பது பூஜ்யமற்ற செங்குத்து வெக்டர்களின் கணம் எனில் S நேர்கோட்டைச் சாராதது என நிரூபிக்க.
 - (ii) உள்பெருக்கல் வெளி V-யில் $S = \{v_1, v_2, \dots v_n\}$ என்பது பூஜ்யமற்ற செங்குத்து வெக்டர்களின் கணம் என்க. $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$ எனில் $\alpha_k = \frac{< v, v_k>}{\|v_k\|^2}$ என நிறுவுக.
 - (i) If $S = \{v_1, v_2, \dots v_n\}$ is an orthogonal set of non-zero vectors in an inner product space V, prove that S is linearly independent.
 - (ii) If $S = \{v_1, v_2, \dots v_n\}$ is an orthogonal set of non-zero vectors in an inner product space V and if

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

then prove that
$$\alpha_k = \frac{\langle v, v_k \rangle}{\|v_k\|^2}$$
.

Page 14 Code No.: 10106

Which of the following is true?

- (a) The vector space R over R is a subspace of C over C
- (b) The vector space C over R is a subspace of C over C
- (c) The vector space R over R is a subspace of C over R
- (d) None of these
- $V_3(R)$ -இல் கோட்டுத் தொடர்பு உடையது எது?
 - (3) {(1,0,0),(0,4,0),(2,8,0)}
 - (2) {(1,0,0), (0,2,0), (0,0,3)}
 - (a) $\{(1,1,0),(1,0,1),(0,1,1)\}$
 - (ff) {(1,0,0), (0,1,0)}

Which of the following is linearly dependent in $V_3(R)$?

- (a) $\{(1,0,0),(0,4,0),(2,8,0)\}$
- (b) {(1,0,0), (0,2,0), (0,0,3)}
- (c) $\{(1,1,0),(1,0,1),(0,1,1)\}$
- (d) $\{(1,0,0),(0,1,0)\}$

Page 2 Code No.: 10106

- 3. $\dim_R C =$
 - (a) 1

(學) 2

(இ) ∞

(ஈ) இவை ஏதுமில்லை

- $\dim_R C =$
- (a) 1

(b) 2

(c) «

- (d) none of these
- $V=\left\{ax^2+bx+c:a,b,c\in R
 ight\}$ என்பது R மீதான வெக்டர் வெளியாகும். $W=\left\{f\in V:f(0)=0
 ight\}$ எனில் $\dim_R W=$
 - (왕) 0

(عه) 1

(風) 2

(m) 3

 $V = \{ax^2 + bx + c : a, b, c \in R\}$ is a vector space over R. If $W = \{f \in V : f(0) = 0\}$ then $\dim_R W$ is

(a) 0

(b) 1

(c) 2

- (d) 3
- 5. $T:R \to R$ ஒரு ஒருபடி நிலைமாற்றம் எனில் எது நடக்க முடியாதது?
 - () T(1)=0
- (a) T(1)=2
- (m) T(2)=1

Page 3

Code No.: 10106

If $T:R\to R$ is a linear transformation which of the following cannot happen?

- T(1) = 0(a)
- T(0)=1
- T(1) = 2
- (d) T(2)=1
- V என்பது படி n மற்றும் அதற்குக் கீழும் கொண்ட மெய்யெண்கள் குணகப் பல்லுறுப்புக் கோவைகளின் வெக்டர் வெளி என்க. $T:V\to V$ என்பது $T(f)=\frac{df}{dx}$ எனில் Nullity T , Rank T ஆகியவை முறையே

 - (அ) 0,n (ஆ) 0,n+1
 - (a) 1, n-1 (F) 1, n

If V is the vector space of all polynomials with real coefficients of degree $\leq n$ over R and $T:V\to V$ is the linear transformation defined as $T(f) = \frac{df}{dx}$ then Nullity T and Rank T are respectively

- (a) 0, n
- (b) 0, n+1
- (c) 1, n-1

Page 4 Code No.: 10106

- ஒரு ஹெர்மீசியன் அணியில் 7.
 - (அ) அனைத்து மூலைவிட்ட உறுப்புக்களும் 0
 - (ஆ) அனைத்து மூலைவிட்ட உறுப்புக்களும் மெய்யெண்கள்
 - (இ) அனைத்து மூலைவிட்ட உறுப்புக்களும் கற்பனை எண்கள்
 - அனைத்து உறுப்புக்களும் கற்பனை எண்கள்

In a Hermitian matrix

- all the diagonal elements are zero
- all the diagonal elements are purely real
- all the diagonal elements are purely imaginary
- all the elements are purely imaginary
- -2 -3 -4 எனும் அணியின் ஐகன் மதிப்புகளின் கூட்டுத் தொகையானது
 - (9) 18
- (2) -9
- (A) 15
- (FF) 7

The sum of the eigen values of $\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$ is

(a) 18

(b) -9

(c) 15

(d)

Page 5

Code No.: 10106

- $V_3(R)$ -இன் வழக்கமான உள்பெருக்கலில் (1,2,3) -இன் செங்குத்து உறுப்பு (0,3,x) எனில் x=
 - (அ) 0

(ஆ) 2

(2) -2

(FF) 3

In $V_3(R)$ with standard inner product, if (1,2,3) is orthogonal to (0,3,x) then x is

(a) 0

(b) 2

(c) -2

- (d) 3
- $V_2(R)$ -இன் வழக்கமான உள்பெருக்கல் வெளியில் செங்குத்து ஓரலகு அடிக்கணமானது

$$(\mathfrak{S}) \quad \left\{ \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \right\}$$

- (2) $\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right), \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) \right\}$
- (a) $\{(1,0),(-1,0)\}$
- (FF) $\left\{ \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \right\}$

Page 6 Code No.: 10106

In $V_2(R)$ with standard inner product, an orthonormal basis is

(a)
$$\left\{ \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \right\}$$

- (b) $\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right), \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) \right\}$
- (c) $\{(1,0),(-1,0)\}$
- (d) $\left\{ \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \right\}$

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL the questions, choosing either (a) or (b).

- 11. (அ) V என்பது F மீதான வெக்டர் வெளி எனில் நிருபிக்க :
 - (i) $\alpha \overline{0} = \overline{0}, \alpha \in F$
 - (ii) $0\overline{v} = \overline{0}, \ \overline{v} \in V$
 - (iii) $(-\alpha)\overline{v} = \alpha(-\overline{v}) = -(\alpha\overline{v}), \alpha \in F, \overline{v} \in V$.

If V is a vector space over F, prove that

- (i) $\alpha \overline{0} = \overline{0}, \alpha \in F$
- (ii) $0\overline{v} = \overline{0}, \ \overline{v} \in V$
- (iii) $(-\alpha)\overline{v} = \alpha(-\overline{v}) = -(\alpha\overline{v}), \alpha \in F, \overline{v} \in V$.

Or

Page 7 Code No.: 10106

(ஆ) $V_3(R)$ வெக்டர் வெளியில் $\{v_1,v_2,v_3\}$ ஒரு நேர் கோட்டைச் சாராத கணம் எனில் $\{2v_1+v_2,v_1+v_2,v_1-v_3\}$ நேர்கோட்டை சாராத கணம் என நிறுவுக.

If $\{v_1,v_2,v_3\}$ is linearly independent in $V_3(R)$, prove that $\{2v_1+v_2,v_1+v_2,v_1-v_3\}$ is linearly independent.

 $S = \{(2, -3, 1), (0, 1, 2), (1, 1, 2)\}$ எனும் கணப் $V_3(R)$ -இன் அடிக்கணமே என நிறுவுக.

Prove that $S = \{(2, -3, 1), (0, 1, 2), (1, 1, 2)\}$ is a basis for $V_3(R)$.

Or

(3) $V_3(R)$ -இல் $\{(1,1,1),(-1,-1,-1)\}$ -ஆல் பிறப்பிக்கப்படும் உள்வெளியின் பரிமாணத்தை காண்க.

Find the dimension of the subspace spanned by $\{(1,1,1),(-1,-1,-1)\}$ in $V_3(R)$.

13. (அ) $T:R^2 \to R^2$ என்பது T(a,b) = (2a-3b,a+4b) என்று வரையறுக்கப்பட்டால் T ஒரு ஒருபடி நிலை மாற்றமா எனச் சோதிக்க.

If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined as T(a,b) = (2a-3b,a+4b) verify whether T is a linear transformation.

Or

Page 8 Code No.: 10106

- (ஆ) $T:V_3(R) o V_3(R)$ எனும் ஒருபடி நிலைமாற்றத்தின் (e_1,e_2,e_3) -யை ஒட்டிய அணி $\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ எனில் T-யைக் காண்க. $\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ If $T:V_3(R) o V_3(R)$ is determined by the matrix $\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ with respect to the basis $\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$
- 14. (அ) $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ எனும் அணிக்கு கெய்லி–ஹேமில்டன் தேற்றத்தைச் சரிபார்க்க.

 Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Oı

(ஆ) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$ எனும் அணிக்குச் சிறப்புக்

சமன்பாட்டைக் காண்க.

 $\{e_1, e_2, e_3\}$ find T.

Find the characteristic equation of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}.$

Page 9 Code No.: 10106

$$V$$
 என்பது உள்பெருக்கல் வெளியாயின்
$$\left\|x+y\right\|^2 + \left\|x-y\right\|^2 = 2\left\lceil \left\|x\right\|^2 + \left\|y\right\|^2 \right
ceil$$
 என நிறுவுக.

Prove that $||x+y||^2 + ||x-y||^2 = 2[||x||^2 + ||y||^2]$ in any inner product space V.

Or

(ஆ) வழக்கமான உள்பெருக்கலுடன் கூடிய $V_3(R)$ -இல் (1,1,-1) , (1,0,1) ஆகிய உறுப்புக்களுக்குச் செங்குத்தான ஓரலகு உறுப்பினைக் காண்க.

Find a vector of unit length which is orthogonal to (1,1,-1) and (1,0,1), in $V_3(R)$ with standard inner product.

PART C
$$-$$
 (5 \times 8 = 40 marks)

Answer ALL the questions, choosing either (a) or (b).

16. (அ) V என்பது F மீதான வெக்டர் வெளி மற்றும் w என்பது V-யின் உள்வெளி எனில் $rac{V}{W} = \{W+v, v \in V\}$ என்பது

$$(W+v_1)+(W+v_2)=W+(v_1+v_2)\,,\; \alpha(W+v)=W+\alpha v\,.$$
 என்ற கூட்டல், பெருக்கலின் கீழ் F மீதான வெக்டர் வெளியாகும் என நிறுவுக.

Page 10 Code No.: 10106

If V is a vector space over F and W is a subspace of V, prove that $\frac{V}{W} = \{W + v, v \in V\}$ is a vector space over F under

$$(W + v_1) + (W + v_2) = W + (v_1 + v_2), \alpha(W + v) = W + \alpha v.$$

Or

(ஆ) S என்பது V எனும் வெக்டர் வெளியின் உட்கணம் எனில் L(S) என்பது S-ஐ உட்கணமாகக் கொண்ட மீச்சிறு உள்வெளி என நிறுவுக.

If $S \subset V$, prove that L(S) is the smallest subspace containing S.

- V என்பது F மீதான வெக்டர்வெளி. $S = \{v_1, v_2, v_n\} \subseteq V$ எனில் கீழ்க்கண்டவை ஒன்றையொன்று வலியுறுத்துபவை என நிறுவுக :
 - (i) S என்பது Vயின் அடிக்கணம்
 - (ii) S என்பது மீப்பெறு நேர்கோட்டைக் சாராத கணம்
 - (iii) S என்பது மீச்சிறு பிறப்பிக்கும் கணம்.

If V is a vector space over F and $S = \{v_1, v_2, ..., v_n\} \subseteq V$, prove that the following are equivalent:

- (i) S is a basis for V.
- (ii) S is a maximal linearly independent set.
- (iii) S is a minimal generating set.

Or

Page 11 Code No.: 10106

(-3) R மீதான $C \times C$ வெக்டர் வெளிக்கு $\{(1,0),(i,0),(0,1),(0,i)\}$ ஓர் அடிக்கணம் என நிறுவுக.

Prove that $\{(1,0),(i,0),(0,1),(0,i)\}$ is a basis for the vector space $C \times C$ over R.

18. (அ) F என்ற புலத்தின் மீது அமைந்த n பரிமாணம் கொண்ட எந்த வெக்டர் வெளியும் $V_n(F)$ -க்குச் சமானமானது என நிறுவுக.

Show that any vector space of dimension n over a field F is isomorphic to $V_n(F)$.

Or

(ஆ) $T:V_3(R) o V_2(R)$, T(a,b,c) = (a+b,2c-a) என்ற ஒருபடி நிலை மாற்றத்திற்கு $\{(1,0,-1),(1,1,1),(1,0,0)\}$ மற்றும் $\{(0,1),(1,0)\}$ ஆகிய அடிக்கணங்களைப் பொருத்த அணியினைக் காண்க.

If $T:V_3(R) \to V_2(R)$ is defined by T(a,b,c) = (a+b,2c-a) find the matrix of T with respect to the bases $\{(1,0,-1),(1,1,1),(1,0,0)\}$ and $\{(0,1),(1,0)\}$.

Page 12 Code No.: 10106

19. (அ) $\begin{bmatrix} 1 & 1 & 3 \\ 4 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ என்ற அணியின் ஐகன் மதிப்புகளையும்

அவற்றிற்கான ஐகன் வெக்டர்களையும் காண்க.

Find the eigen values and eigen vectors of

the matrix
$$\begin{bmatrix} 1 & 1 & 3 \\ 4 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
.

Or

(ஆ) $egin{bmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{bmatrix}$ என்ற அணிக்கு ஐகன் மதிப்புகளையும்

ஐகன் வெக்டர்களையும் காண்க.

Find the eigen values and eigen vectors of

the matrix
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
.

- 20. (அ) உள்பெருக்கல் வெளியில் அலகினை வரையறுக்க. கீழ்க்கண்டவற்றை நிரூபிக்க :
 - (i) $\|\alpha x\| = |\alpha| \|x\|$
 - (ii) $||x+y|| \le ||x|| + ||y||$.

Page 13 Code No.: 10106