Reg. No.: (6 pages)

Code No.: 30479 E Sub. Code: CMCH 52

> B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.

> > Fifth Semester

Chemistry — Core

PHYSICAL CHEMISTRY - II

(For those who joined in July 2021 & 2022 only)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- Identify the intensive property from the following
 - (a) Enthalpy
- Temperature
- Volume
- Heat capacity
- A gas expands from 10 lit to 20 lit against a constant pressure of 5 atm. The pressure - volume work done by the system is
 - -50 lit atm
- 50 lit atm
- -100 lit atm
- 100 lit atm

- In which of the following case entropy decreases?

 - $(a) \quad I_{2(s)} {\longrightarrow} I_{2(g)} \qquad (b) \quad H_2O_{(l)} {\longrightarrow} H_2O_{(g)}$
 - (c) $H_2O_{(s)} \longrightarrow H_2O_{(l)}$ (d) $H_2O_{(g)} \longrightarrow H_2O_{(l)}$
- Gibbs free energy equation is
 - $\Delta G = \Delta H T\Delta S$
- $\Delta G = \Delta E T\Delta S$
- $\Delta G = -T\Delta S$
- $\Delta G = T\Delta S$
- The number of phases in a mixture of three gases enclosed in a container is

(b) 1

- (d) 3
- If x is the solubility of $KAl(SO_4)_2$, then its solubility product is

 $4x^3$

- (d) $4x^4$
- Which chemical is used in moving boundary method for the determination of transport number?
 - Cd(OH)₂
- CdS
- CdCl₂
- CdSO,

Code No.: 30479 E Page 2

- 8. Which of the following is based on Arrhenius theory?
 - (a) Degree of dissociation
 - (b) Solubility product
 - (c) Ostwald's dilution law
 - (d) All of these
- 9. For a vibration to be IR active, the molecule should have
 - (a) permanent dipole moment
 - (b) change in dipole moment
 - (c) change in polarisability
 - (d) none of the above
- 10. UV radiation causes
 - (a) vibration in the molecule
 - (b) rotation in the molecule
 - (c) nuclear excitation
 - (d) electronic excitation in the molecule

Page 3 Code No.: 30479 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) 2 moles of an ideal gas expands reversibly and isothermally at 20°C from a volume of 2 litres to 20 litres. Calculate the work done by the gas.

Or

- (b) Derive thermodynamically the relationship between $C_{\rm p}$ and $C_{\rm v}$.
- 12. (a) Explain the physical significance of entropy.

Or

- (b) Define Helmholtz free energy and Gibbs free energy. Write the differences between them.
- 13. (a) Explain the phase diagram of Pb Ag system.

Or

- (b) What is a buffer solution? Explain the buffer action of an acid buffer.
- 14. (a) How is the solubility of a sparingly soluble salt determined by conductance measurements?

Or

(b) Explain Debye - Huckel limiting law.

Page 4 Code No.: 30479 E

[P.T.O.]

15. (a) How is the bond length of a diatomic molecule determined from its rotational spectrum?

Or

(b) State and explain the rule of mutual exclusion principle in Raman spectroscopy.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

- 16. (a) (i) Explain state and path functions with examples.
 - (ii) State the first law of thermodynamics.

Or

- (b) (i) What is inversion temperature? Explain.
 - (ii) State Hess's law of constant heat summation. Illustrate one of its applications with an example.
- 17. (a) Explain how the absolute entropy of a gas at 25°C is determined with the help of third law of thermodynamics.

Or

- (b) (i) Explain partial molar properties.
 - (ii) Explain how chemical potential changes with change in temperature and pressure.

Page 5 Code No.: 30479 E

18. (a) Derive Clapeyron - Clausius equation and write its uses.

Or

- (b) What are the analytical applications of common ion effect and solubility product?
- 19. (a) Discuss about Kohrausch's law and its applications.

Or

- (b) Draw and explain the conductometric titration curves of
 - (i) HCl × NaOH
 - (ii) CH₃COOH × NaOH
 - (iii) a mixture of HCl and $CH_3COOH \times NaOH$.
- 20. (a) Discuss the theory of vibrational spectroscopy.

Or

(b) Explain the various types of electronic transitions.

Page 6 Code No.: 30479 E