(7 pages)

Reg. No.:....

Code No.: 20412 E Sub. Code: CACS 11/ CASE 11

> B.Sc.(CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

> > First Semester

Computer Science/Software Engineering

DISCRETE MATHEMATICS

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. If R is a relation "Less Than" from $A = \{1, 2,3,4\}$ to $B = \{1, 3,5\}$ then RoR-1 is
 - (a) {(3,3), (3,4), (3,5)}
 - (b) {(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)}
 - (c) $\{(3,3), (3,5), (5,3), (5,5)\}$
 - (d) $\{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$

- 2. R is a binary relation on a set S and R is reflexive if and only if
 - (a) r(R) = R
- (b) s(R) = R
- (c) t(R) = R
- (d) f(R) = R
- 3. Which of the following statement is a proposition?
 - (a) Get me a glass of milkshake
 - (b) God bless you!
 - (c) What is the time now?
 - (d) The only odd prime number is 2
- 4. A function is said to be _____ if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.
 - (a) One-to-many
- (b) One-to-one
- (c) Many-to-many
- (d) Many-to-one
- 5. Let f and g be the function from the set of integers to itself, defined by f(x) = 2x + 1 and g(x) = 3x + 4. Then the composition of f and g is
 - (a) 6x + 9

(b) 6x + 7

(c) 6x + 6

(d) 6x + 8

Page 2 Code No.: 20412 E

				order $(c \times d)$ be two s, the order of AB is	
(a)	$a \times d$		(b)	$b \times c$	
(c)	$a \times b$		(d)	$c \times d$	
	All the diagonal elements of a skew-symmetric matrix is				
(a	0		(b)	1	
(c)	2		(d)	Any integer	
		y relation <i>l</i> 3, 35} is		(empty set) on a set	
(a	Neith	er reflexive i	or syı	mmetric	
(c)) Symm	Symmetric and reflexive			
	Trans	Transitive and reflexive			
	Transitive and symmetric				
A	A graph is a collection of				
(a) Row a	and columns	(b)	Vertices and edges	
(c) Equa	tions	(d)	None of these	
	A graph G is called a if it is a connected acyclic graph				
(2) Cyclic	graph	(b)	Regular graph	
(0) Tree		(d)	Not a graph	
		Pa	ge 3	Code No.: 20412 E	

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Consider A {1,2,3,4} and B = {3, 4, 5, 6}. Find the elements of each relation R stated below. Also, find the domain and range of R.

 $a \in A$ is related to $b \in B$ i.e., aRb, if and only if a < b

Or

- (b) Find the number of distinct relations from a set A to a set B.
- 12. (a) Let $A = \{a,b,c\}$, $B = \{1,2,3\}$ and $f = \{(a, 1), (b, 3), (c, 2)\}$. Determine the inverse.

Or

- (b) Give the f_1 and f_2 are functions from R to R, in which $f_1(x) = x$ and $f_2(x) = (1/x) x$. Determine the functions $f_1 + f_2$ and $f_1 f_2$
- 13. (a) Write down the laws of formal logic.

Or

- (b) Find the negation of the following propositions:
 - (i) Today is Saturday.
 - (ii) It is a rainy day.
 - (iii) It snows and Mona does not drive the car.

Page 4 Code No.: 20412 E

[P.T.O.]

 (a) If A is any square matrix, show that AA^T is symmetric matrix.

Or

- (b) If both A and B are skew-symmetric matrices of the same order such that AB = BA, then show that AB is symmetric.
- (a) Distinguish between the undirected and directed graphs.

Or

(b) Explain the representation of graph.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

16. (a) Find the composition of the relations $R_1 = \{(1,2), (1,6), (2,4), (3,4), (3,6), (3,8)\} \text{ and }$ $R_2 = \{(2,x), (4,y), (4,z), (6,z), (8,x)\}$

Or

(b) Let A = (1, 2, 3, 4) and $B = \{p, q, r, s\}$ and $R = \{(1, p), (1, q), (1, r), (2, q), (2, r), (2, s)\}$. Find M_R .

Page 5 Code No.: 20412 E

17. (a) Let g be the function from the set $\{a, b, c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a, b, c\}$ to the set $\{1, 2, 3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1. Determine the composition of f and g and also the composition of g and f.

Or

- (b) Show that the function $f(x) = x^3$ and $g(x) = x^{1/3}$ for all $x \in R$ are inverse of each other.
- 18. (a) Show that $p \Rightarrow q$ is the same as $\sim q \Rightarrow \sim p$.

Or

- (b) Show that the proposition $(p \land \neg q) \lor \neg (p \land q)$ is a tautology.
- 19. (a) What are the types of matrices? Explain.

Or

(b) If the product of two non-zero square matrices is a zero matrix, then prove that both of them are singular matrices.

Page 6 Code No.: 20412 E

(a) Show the two graphs as shown in figure (a) and figure (b) are isomorphic

(b) What are the operations on graphs? Explain.

Page 7 Code No.: 20412 E