M.Sc. (CBCS) DEGREE EXAMINATION. APRIL 2019.

Fourth Semester

Mathematics - Core

COMPLEX ANALYSIS

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

- If $u = 2x x^3 + 3xy^2$ then Δu is
 - 12 x

- (c) 6x 6
- (d) 6xy + 6x.
- If $P(z) = a_3(z a_1)(z a_2)(z a_3)$ then $\frac{P'(z)}{P(z)}$ is

- The complex form of the Cauchy-Riemann equation is

 - (a) $\frac{\partial f}{\partial x} = i \frac{\partial f}{\partial y}$ (b) $\frac{\partial f}{\partial x} i \frac{\partial f}{\partial y} = 0$

 - (c) $\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y}$ (d) $\frac{\partial f}{\partial y} = -i \frac{\partial f}{\partial y}$
- The points z and z^{α} are symmetric w.r.t. the circle C through z_1, z_2, z_3 if and only it
 - (a) $(z^*, z_1, z_2, z_3) = (z, z_1, z_2, z_3)$
 - (b) $(z^*, z_1, z_2, z_3) = -(z, z_1, z_2, z_3)$
 - (c) $(z, z_1, z_2, z_3) = z + z^*$
 - (d) $\overline{(z, z_1, z_2, z_3)} = (z^*, z_1, z_2, z_3).$

- 6. The index of the point a w.r.t. the cure γ is

 - (a) $\int \frac{dz}{z-a}$ (b) $2\pi i \int \frac{dz}{z-a}$

 - (c) $\frac{1}{2\pi i} \int_{z} \frac{dz}{z-a}$ (d) $\int_{z} (z-a) dz$.

Page 2

Code No.: 7134

- "A function which is analytic and bounded in the whole plane must reduce to a constant" — This result is known as
 - (a) Morera's theorem
 - (b) Liouville's theorem
 - (c) Fundamental theorem of algebra
 - (d) Cauchy's theorem.
- 8. $\int_{|z|=1}^{\infty} e^{z} \cdot z^{-n} dz \text{ is}$
 - (a) 0

(b) 2π

- (c) $\frac{2\pi i}{(n-1)!}$
- (d) $\frac{2\pi i}{n!}$
- 9. The residue of $\frac{e^z}{(z-a)^2}$ at z=a is
 - (a) e

(b) e^{2a}

(c) e^{-2a}

- (d) e-0
- 10. If f has a pole of order h then
 - (a) f_1/f has the residue h
 - (b) f_1/f has the residue h
 - (c) f/f_1 has the residue h
 - (d) f_1/f has the residue $\frac{-h}{h}$.

Page 3 Code No.: 7134

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

 (a) If all zeros of a polynomial P (z) lie in a half plane, prove that all zeros of the derivative P'(z) lie in the same half plane.

Or

- (b) Verify Cauchy-Riemann's equations for the function z³.
- 12. (a) Show that any linear transformation which transforms the real axis into itself can be written with real coefficients.

Or

- (b) Find the linear transformation which carries 0, i, -i into 1, -1, 0.
- 13. (a) Obtain Cauchy's integral formula.

Or

- (b) Compute $\int_{|z|=2} \frac{dz}{z^2+1}$
- 14. (a) State and prove Liouville's theorem.

Or

(b) State and prove the fundamental theorem of algebra.

> Page 4 Code No.: 7134 [P.T.O.]

State and prove the residue theorem.

Or

State and prove the Rouche's theorem.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

Define an analytic function with an example. 16. Prove that the functions f(z) and $\overline{f(\overline{z})}$ are simultaneously analytic.

Or

- Show that $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} n a_n z^{n-1}$ have the same radius of convergence.
 - (ii) If $\sum_{n=0}^{\infty} a_n$ converges, prove that $f(z) = \sum_{n=0}^{\infty} a_n z^n \to f(1)$ as $z \to 1$ in such a way that |1-z|/(1-|z|) remains bounded.

Code No.: 7134 Page 5

Prove that the line integral $\int p \, dx + q \, dy$ defined in Ω depends only on the end points of y if and only if there exists a function U(x, y) in Ω with the partial derivatives $\frac{\partial U}{\partial x} = p, \ \frac{\partial U}{\partial y} = q.$

Or

- Define the cross ratio (z_1, z_2, z_3, z_4) . Show that the cross ratio is invariant under linear transformation.
 - Prove that a linear transformation carries circles into circles.
- State and prove Cauchy's theorem for a 18. (a) rectangle.

Or

Show that the value of the integral $\int \frac{dz}{z-a}$ is a multiple of $2\pi i$ and hence show that the winding number $n(\gamma, a)$ is an integer. Also show that $n(-\gamma, a) = -n(\gamma, a)$.

> Code No.: 7134 Page 6

State and prove Taylor's theorem. 19.

Or

- State and prove Weierstrass theorem for essential singularity of an analytic function.
- State and prove the argument principle.

Evaluate

Code No.: 7134 Page 7