Reg. No. :

Code No.: 30149 Sub. Code: GMMA 22/

GMMC 22

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2014.

Second Semester

Mathematics - Main

DIFFERENTIAL EQUATIONS AND FOURIER SERIES

(Also Common to Maths with Computer Applications)
(For those who joined in July 2012 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- $x^2p^2 + 3xyp + 2y^2 = 0$ என்ற சமன்பாட்டின் படி மற்றும் வரிசை முறையே
 - (a) 2,2
- (ஆ) 2,1
- (இ) 1,1
- (FF) 1,2

The degree and order of the equation $x^2p^2 + 3xyp + 2y^2 = 0$ are respectively

- (a) 2 and 2
- (b) 2 and 1
- (c) 1 and 1
- (d) 1 and 2

px + y = 0 என்ற சமன்பாட்டின் தீர்வு

$$(A)$$
 $x+y=0$

(a)
$$x + y = c$$
 (a) $x - y = c$

(a)
$$xy = c$$

$$(FF) yx^2 = c$$

The solution of the equation px + y = 0 is

(a)
$$x + y = c$$
 (b) $x - y = c$

(b)
$$x - y = c$$

(c)
$$xy = c$$

(c)
$$xy = c$$
 (d) $yx^2 = c$

 $(D^2 - 5D + 4)y = 0$ என்ற சமன்பாட்டின் தீர்வு

(a)
$$y = c_1 e^{5x} + c_2 e^{4x}$$
 (a) $y = c_1 e^x + c_2 e^{4x}$

(3)
$$y = c_1 e^x + c_2 e^{4x}$$

(a)
$$y = c_1 e^{4x} + c_2 e^{3x}$$
 (iii) $y = (c_1 + c_2 x)e^{4x}$

(iii)
$$y = (c_1 + c_2 x)e^{4x}$$

The solution of the equation $(D^2 - 5D + 4)y = 0$ is

(a)
$$y = c_1 e^{5x} + c_2 e^{4x}$$
 (b) $y = c_1 e^x + c_2 e^{4x}$

(b)
$$y = c_1 e^x + c_2 e^{4x}$$

(c)
$$y = c_1 e^{4x} + c_2 e^{3x}$$
 (d) $y = (c_1 + c_2 x)e^{4x}$

(d)
$$y = (c_1 + c_2 x)e^{4x}$$

 $(D^2+3D+2)y=\sin x$ என்ற சமன்பாட்டின் தனித்தீர்வு

$$(\mathfrak{A}) \quad \frac{\sin x - 3\cos x}{10} \qquad (\mathfrak{A}) \quad \frac{\sin x + 3\cos x}{10}$$

$$(\mathfrak{Z}) \frac{\sin x + 3\cos x}{10}$$

$$(\textcircled{a}) \quad \frac{\sin x - \cos x}{10} \qquad (\textcircled{a}) \quad \frac{\sin x + \cos x}{10}$$

$$(\pi) \quad \frac{\sin x + \cos x}{10}$$

Code No.: 30149 Page 2

The particular integral of $(D^2 + 3D + 2)y = \sin x$ is

(a)
$$\frac{\sin x - 3\cos x}{10}$$

(b)
$$\frac{\sin x + 3\cos x}{10}$$

(c)
$$\frac{\sin x - \cos x}{10}$$
 (d)
$$\frac{\sin x + \cos x}{10}$$

(d)
$$\frac{\sin x + \cos x}{10}$$

5. $x^2 \frac{dy^2}{dx^2} + x \frac{dy}{dx} - 3y = 0$ என்ற சமன்பாட்டின் தீர்வு

$$(\mathfrak{S}) \quad y = A\cos 3x + B\sin 2x$$

(2b)
$$y = Ax^{\sqrt{3}} + Bx^{-\sqrt{3}}$$

(a)
$$y = (A + Bx)e^{3x}$$

(FF)
$$y = Ax^{-3} + 13x^3$$

The solution of $x^2 \frac{dy^2}{dx^2} + x \frac{dy}{dx} - 3y = 0$ is

(a)
$$y = A\cos 3x + B\sin 2x$$

(b)
$$y = Ax^{\sqrt{3}} + Bx^{-\sqrt{3}}$$

(c)
$$y = (A + Bx)e^{3x}$$

(d)
$$y = Ax^{-3} + 13x^3$$

Page 3 Code No.: 30149

- 6. $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} 3y = x^2$ என்ற சமன்பாட்டின் தனித்தீர்வு
 - (அ) x^2 (ஆ) x^3

The particular integral of $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 3y = x^2$

is

- (a) x^2 (b) x^3
- (c) x^4 (d) x^5
- $L(t^2 + \cos 3t)$ இன் மதிப்பு
 - (a) $\frac{1}{s^2} + \frac{s}{s^2 + 9}$ (a) $\frac{2}{s^3} + \frac{3}{s^2 + 9}$

 - (a) $\frac{2}{s^3} + \frac{s}{s^2 + 9}$ (FF) $\frac{3}{s^2 + 9} + \frac{1}{s^3}$

The value of $L(t^2 + \cos 3t)$ is

- (a) $\frac{1}{s^2} + \frac{s}{s^2 + 9}$ (b) $\frac{2}{s^3} + \frac{3}{s^2 + 9}$
- (c) $\frac{2}{s^3} + \frac{s}{s^2 + 9}$ (d) $\frac{3}{s^2 + 9} + \frac{1}{s^3}$

Page 4 Code No.: 30149

- $L(\sinh 3t)$ இன் மதிப்பு
 - (4) $\frac{3}{s^2+9}$ (4) $\frac{s}{s^2+9}$
 - (a) $\frac{3}{s^2-9}$ (FF) $\frac{s}{s^2-9}$

The value of $L(\sinh 3t)$ is

- (a) $\frac{3}{s^2 + 9}$ (b) $\frac{s}{s^2 + 9}$
- (c) $\frac{3}{s^2 9}$ (d) $\frac{s}{s^2 9}$
- 9. $m \neq n$ எனில் $\int \sin mx \sin nx \ dx$ இன் மதிப்பு
 - (அ) 0

- (ஈ) இவை ஏதுமில்லை

The value of $\int_{0}^{\lambda+2\pi} \sin mx \sin nx \ dx$ for $m \neq n$, is

- (a) 0 (b) π

- (d) None of these
- f(x) = x, $-\pi < x < \pi$ என்றச் சார்பின், பூரியர் விரிவில் a₀ இன் மதிப்பு

 - (의) 0 (광) 1
 - (<u>Q</u>) π
- (r) π^2

Page 5 Code No.: 30149 The value of a_0 is the Fourier series expansion for the function f(x) = x, $-\pi < x < \pi$ is

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (அ) தீர்:
$$xp^2 - 2yp + x = 0$$
,

Solve:
$$xp^2 - 2yp + x = 0$$
.

Or

(ஆ) தீர்:
$$x^2 = 1 + p^2$$
.

Solve:
$$x^2 = 1 + p^2$$
.

12. (அ) தீர்:
$$(D^2 - 8D + 9)y = 8\sin 5x$$

Solve:
$$(D^2 - 8D + 9)y = 8\sin 5x$$
.

Or

(
$$\Rightarrow$$
) $\&$ ir: $(D^2 - 2D + 1)y = e^{2x} + e^x$.

Solve:
$$(D^2 - 2D + 1)y = e^{2x} + e^x$$
.

Page 6 Code No.: 30149

13. (a) Sin:
$$x^2 \frac{d^2 y}{dx^2} + 8x \frac{dy}{dx} + 12y = x^4$$
.

Solve:
$$x^2 \frac{d^2 y}{dx^2} + 8x \frac{dy}{dx} + 12y = x^4$$
.

Or

(2) Sin:
$$x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = 6x^2 + 2x + 1$$
.

Solve:
$$x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = 6x^2 + 2x + 1$$
.

$$L(\sin^2 2t)$$
 , $L(t^2 e^{-3t})$ ஆகியவற்றின் மதிப்புகளைக் காண்க.

Find
$$L(\sin^2 2t)$$
 and $L(t^2e^{-3t})$.

Oı

(ஆ)
$$L\!\!\left(rac{1-t}{t}
ight)$$
, $L\!\!\left(rac{\sin at}{t}
ight)$ ஆகியவற்றின் மதிப்புகளைக்

Find
$$L\left(\frac{1-t}{t}\right)$$
 and $L\left(\frac{\sin at}{t}\right)$.

15. (அ) காலம்
$$2\pi$$
 கொண்டுள்ள $f(x) = x(-\pi < x < \pi)$ என்றச் சார்வை பூரியர் தொடராக விரிவாக்கவும்.

Express
$$f(x) = x(-\pi < x < \pi)$$
 as a Fourier series with period 2π .

Or

Page 7 Code No.: 30149

 (\mathfrak{S}_b) f(x) = -x, $-\pi < x < 0$, f(x) = x, $0 \le x < \pi$ என்றச் சார்ப்பை $-\pi$ இலிருந்து π வரை உள்ள இடைவெளியில் பூரியர் தொடராக விரிவாக்கவும்.

> If f(x) = -x in $-\pi < x < 0$ and f(x) = x in $0 \le x < \pi$, expand f(x) as a Fourier series in the interval $-\pi$ to π .

PART C
$$-$$
 (5 \times 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) (i) §
$$\dot{g}$$
 if: $y \frac{dp}{dx} + p^2 = 1$.

- (ii) $\&\dot{n}: y^2 = (1+p^2).$
- (i) Solve: $y \frac{dp}{dx} + p^2 = 1$.
- (ii) Solve: $y^2 = (1 + p^2)$.

(
$$\Rightarrow$$
) (i) $\text{sin}: x^2p^2 + 3xyp + 2y^2 = 0$

- (ii) $\&\dot{n}: (y+px)^2 = py^2$.
- (i) $x^2p^2 + 3xyp + 2y^2 = 0$.
- (ii) $(y + px)^2 = py^2$.

Code No.: 30149 Page 8

17. (a)
$$fin : (D^2 + 1)y = x^2e^{2x} + x\cos x$$
.

Solve: $(D^2 + 1)y = x^2e^{2x} + x\cos x$.

(ஆ) தீர்:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = e^x \cos x$$
.

Solve:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = e^x \cos x.$$

18. (④) §
$$\dot{g}$$
 : $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \frac{\log x \sin(\log x) + 1}{x}$.

Solve:
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \frac{\log x \sin(\log x) + 1}{x}$$
.

Or

(2) §
$$\dot{\mathbf{f}}$$
 : $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = x^2 \log x$.

Solve:
$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = x^2 \log x$$
.

$$L\{f''(t)\} = s^2 L f(t) - s f(0) - f'(0)$$
 என நிறுவுக.

$$(ii)$$
 $L^{-1}\!\!\left(\!rac{s+3}{(s^2+6s+13)^2}
ight)$ இன் மதிப்பைக்
காண்க.

Code No.: 30149 Page 9

(i) Prove that
$$L\{f''(t)\} = s^2 L f(t) - s f(0) - f'(0).$$

(ii) Find
$$L^{-1} \left(\frac{s+3}{(s^2+6s+13)^2} \right)$$
.

(ஆ)
$$t=0$$
 எனும் பொழுது $y=\dfrac{dy}{dt}=0$ என்றிருப்பின் லாப்லஸ் உருமாற்றத்தைப் பயன்படுத்தி தீர்க்கவும்
$$\dfrac{d^2y}{dt^2}+2\dfrac{dy}{dt}-3y=\sin t\,.$$

Solve the equation using Laplace transform $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$, given that $y = \frac{dy}{dt} = 0$ when t = 0.

$$20.$$
 (அ) $(-\pi < x < \pi)$ என்ற இடைவெளியில், $x^2 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n}$ என காண்பிக்கவும் இதிலிருந்து $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$ தருவிக்கவும். Show that $x^2 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n}$ in the

Show that $x = \frac{1}{3} + \sum_{n=1}^{\infty} (-1)^n - \frac{1}{n}$ in the interval. $(-\pi < x < \pi)$. Deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$.

Or

Page 10 Code No.: 30149

(ஆ)
$$(0 < x < 2\pi)$$
 என்ற இடைவெளியில் $f(x) = x(2\pi - x)$ என்ற இருப்பின்,
$$f(x) = \frac{2\pi^2}{3} - 4 \bigg(\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \cdots \bigg)$$
 என்று நிரூபிக்கவும்.

If
$$f(x) = x(2\pi - x)$$
 in $(0 < x < 2\pi)$, prove that
$$f(x) = \frac{2\pi^2}{3} - 4\left(\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \cdots\right).$$

Page 11 Code No.: 30149