(ஆ) கீரின் தேற்றத்தைப் பயன்படுத்தி, y = 0, x = 1மற்றும் y = x ஆல் உருவான மூடிய வளைவு Cவழியாக $\int_{C} (xy - x^2) dx + x^2 y dy$ ன் மதிப்பைக்

காண்க.

Using Green's theorem evaluate $\int_C (xy - x^2) dx + x^2 y dy$ along the closed curve C formed by y = 0, x = 1, and y = x.

Reg. No. :.....

Code No. : 11071

Sub. Code : GAMA 21

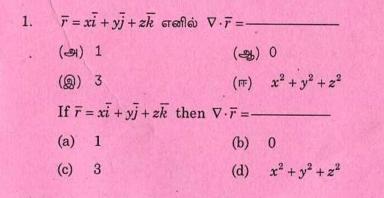
B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2013.

Second Semester

Mathematics - Allied

VECTOR CALCULUS

(For those who joined in July 2012 onwards)


Time : Three hours

Maximum : 75 marks

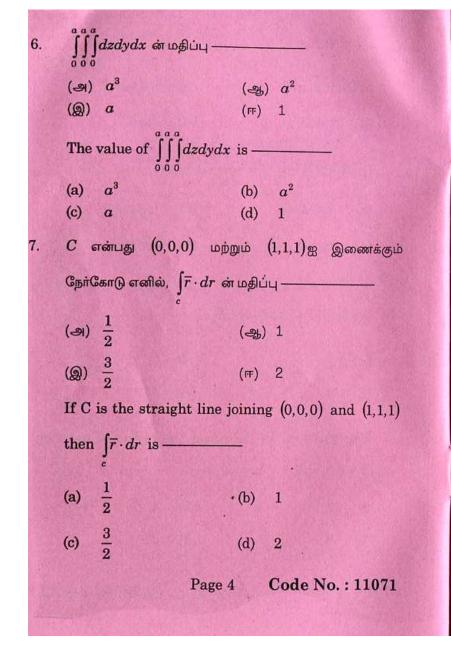
PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

Page 14 Code No. : 11071

Nesamony Memorial Christian College, Marthandam



2.	வெக்டார் சார்பு $ar{f}=x^2ar{i}+y^2ar{j}+z^2ar{k}$	4. $\int \cot \theta d\theta =$		
	(அ) பாய்வற்றது (ஆ) சுழற்சியற்றது	(அ) $\log \sin \theta$ (ஆ) $\log \tan \theta$		
4-11-14-14-14-14-14-14-14-14-14-14-14-14	(ஆ) இசையுடையது (ஈ) பாய்வுடையது மற்றும் சுழற்சியுடையது	(@) $\tan\theta$ (F) $\sin\theta$		
	The vector function $\vec{f} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ is	$\int \cot \theta d\theta =$		
	(a) solenoidal	(a) $\log \sin \theta$ (b) $\log \tan \theta$		
AND AND A	(b) irrotational	(c) $\tan\theta$ (d) $\sin\theta$		
3.	 (c) harmonic (d) neither solenoidal nor irrotation 	5. x = 0, x = 2, y = 0, y = 2 ஆகியவற்றால் அடைபடும் பகுதியில், ∫∫dxdy ன் மதிப்பு		
0.	$\int e^{ax+b} dx =$ (a) $\frac{1}{b}e^{ax+b}$ (a) $\frac{1}{a}e^{ax+b}$	(அ) 2 (ஆ) 4		
	(FF) $\frac{1}{a}e^{bx+a}$ (FF) $\frac{1}{b}e^{bx+a}$	(@) 0 (FF). 3 The value of $\iint dxdy$ over the region bounded by		
A Cane	$\int e^{ax+b}dx =$	x = 0, x = 2, y = 0, y = 2 is		
	(a) $\frac{1}{b}e^{ax+b}$ (b) $\frac{1}{a}e^{ax+b}$	(a) 2 (b) 4		
	(c) $\frac{1}{a}e^{bx+a}$ (d) $\frac{1}{b}e^{bx+a}$	(c) 0 (d) 3		
	Page 2 Code No. : 11071	Page 3 Code No. : 11071		

April - 2013

Nesamony Memorial Christian College, Marthandam

8.	மற்ற	ரம் (1,1) ஆகிய	ப புள்ளிகனை	ழம் C என்பது $\left(0,0 ight)$ ா இணைக்கும் $y=x^2$ ல $\int\limits_c r\cdot dr$ ன் மதிப்பு	
	(அ)	0	(കൃ)	$\frac{9}{10}$	
	(ھ)	$\frac{1}{2}$	(17)	2	
	If $\overline{f} = (x^2 + y^2)\overline{i} + (x^2 - y^2)\overline{j}$ then the value of				
	$\int_{c} r \cdot dr \text{ where } C \text{ is.the part of the curve } y = x^{2}$ joining the points (0,0) and (1,1) is				
	(a)	0	(b)	<u>9</u> 10	
	(c)	$\frac{1}{2}$	(d)	2	
9.	. V என்பது S என்ற மூடிய மேற்பரப்பினால் உருவா				
	கொள்ளிடம் எனில், $\int\int\limits_s \overline{r} \cdot \overline{n} \; dS$ ன் மதிப்பு				
	(ආ)	$3V^2$	(ஆ)	3V	
	(இ)	6V	(ஈ)	0	
			Page 5	Code No. : 11071	

If V is the volume enclosed by the closed surface S then the value of $\iint \vec{r} \cdot \vec{n} \, dS$ is _____

(a)	$3V^2$	(b)	3V
(c)	6V	(d)	0

10. காஸ் விரிவாக்கத் தேற்றம் இணைப்பது

- (அ) கோட்டுத் தொகையிடல் மற்றும் இரட்டைத் தொகையிடல்
- (ஆ) கோட்டுத் தொகையிடல் மற்றும் மேற்பரப்புத் தொகையிடல்
- (இ) இரட்டைத் தொகையிடல் மற்றும் மேற்பரப்புத் தொகையிடல்
- (ஈ) மேற்பரப்புத் தொகையிடல் மற்றும் கொள்ளளவுத் தொகையிடல்

Gauss' divergence theorem connects

- (a) line integral and double integral
- (b) line integral and surface integral
- (c) double integral and surface integral
- (d) surface integral and volume integral

Page 6 Code No. : 11071

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

11. (அ) $\overline{a}, \overline{b}$ ஆகியன மாறிலி வெக்டார் மற்றும் ω என்பது ஒரு மாறிலி எனும்போது $\overline{r} = \overline{a} \cos \omega t + \overline{b} \sin \omega t$ எனில் $\overline{r} \times \frac{dr}{dt} = \omega (\overline{a} \times \overline{b})$ மற்றும் $\frac{d^2r}{dt^2} = \omega^2 \overline{r} = 0$ என நிறுவுக.

> If $\overline{r} = \overline{a} \cos \omega t + \overline{b} \sin \omega t$ where $\overline{a}, \overline{b}$ are constant vectors and ω is a constant prove that $\overline{r} \times \frac{dr}{dt} = \omega(\overline{a} \times \overline{b})$ and $\frac{d^2r}{dt^2} = \omega^2 \overline{r} = 0$.

> > Or

(ஆ)
$$\left(\frac{\vec{r}}{r}\right) = \frac{2}{r}$$
 என நிறுவுக.
Show that $\operatorname{div}\left(\frac{\vec{r}}{r}\right) = \frac{2}{r}$.

12. (அ)
$$\int \frac{x^2}{(a+bx)^3} dx$$
 மதிப்பு காண்க.
Evaluate $\int \frac{x^2}{(a+bx)^3} dx$.
Or

Page 7 Code No. : 11071

Nesamony Memorial Christian College, Marthandam

((a))
$$\int \frac{dx}{(1+e^x)(1+e^{-x})} \text{ uppling strainers.}$$

Evaluate
$$\int \frac{dx}{(1+e^x)(1+e^{-x})}$$
13. (a))
$$I = \int_{0}^{1} \int_{0}^{\cos \theta} r \sin \theta dr d\theta \text{ uppling strainers.}$$

Evaluate
$$I = \int_{0}^{1} \int_{0}^{\cos \theta} r \sin \theta dr d\theta$$
.
Or
(a))
$$\int_{0}^{2} \int_{1}^{3} \int_{1}^{2} xy^2 z dz dy dx \text{ uppling strainers.}$$

Evaluate
$$\int_{0}^{2} \int_{1}^{3} \int_{1}^{2} xy^2 z dz dy dx$$
.
14. (a))
$$\bar{f} = x^2 \bar{i} - xy \bar{j} \text{ uppling } C \text{ strainers} (0,0) \text{ uppling } (1,1)$$

appling uppling a matrix.

$$\bar{f} = x^2 \bar{i} - xy \bar{j} \text{ and } C \text{ is the straight line joining the points } (0,0) \text{ and } (1,1) \text{ find } \int_{C} f \cdot dr$$
.
Or
Page 8 Code No. : 11071

- (ஆ) S என்பது z = 0 மற்றும் z = 3 ஆகியவற்றால் அடைபடும் கூம்பின் மேற்புறம் $z^2 = 3(x^2 + y^2)$ எனில் $\iint_S (x^2 + y^2) dS$ ன் மதிப்பு காண்க. Evaluate $\iint_S (x^2 + y^2) dS$ where S is the surface of the cone $z^2 = 3(x^2 + y^2)$ bounded by z = 0 and z = 3.
- 15. (அ) x = 0, y = 0, z = 0 x = a, y = a மற்றும் z = aஆகியவற்றால் அடைபடும் கன சதுரத்தில் உள்ள ஒரு வெக்டர் சார்பு $\overline{f} = (x^3 - yz)\overline{i} - 2x^2y\overline{j} + 2\overline{k}$ க்கு காஸ் விரிவாக்கத் தேற்றத்தைச் சரிபார்க்க.

Verify Gauss divergence theorem for the vector function $\overline{f} = (x^3 - yz)\overline{i} - 2x^2y\overline{j} + 2\overline{k}$ over the cube bounded by x = 0, y = 0, z = 0, x = a, y = a and z = a.

- Or
- (ஆ) S என்பது $x^2 + y^2 + z^2 = a^2$ என்ற கோளத்தின் மேல் அரைப்பகுதி மற்றும் $z \ge 0$ எனில் வெக்டர் சார்பு $\overline{f} = y^2 \overline{i} + y \overline{j} - x z \overline{k}$ க்கு ஸ்டோக்ஸ் தேற்றத்தைச் சரிபார்க்க.

Verify Stokes theorem for the vector function $\overline{f} = y^2 \overline{i} + y \overline{j} - xz \overline{k}$ and S is the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ and $z \ge 0$. Page 9 Code No.: 11071

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions.

- 16. (அ) (1,2,2) என்ற புள்ளியில் xyz = 4 என்ற மேற்புறத்தின்
 - (i) தொடுதளம்
 - (ii) செங்குத்து கோடு ஆகியவற்றின் சமன்பாடு காண்க.

Find the equation of the

- (i) tangent plane and
- (ii) normal line to the surface xyz = 4 at the point (1,2,2).

Or

(ஆ) நிறுவுக curl (curl f) = grad div $f - \nabla^2 f$. Prove that curl (curl f) = grad div $f - \nabla^2 f$.

17. (அ) மதிப்பு காண்க
$$\int \frac{x}{\sqrt{x^2 + x + 1}} dx$$
.
Evaluate $\int \frac{x}{\sqrt{x^2 + x + 1}} dx$.
Or
Page 10 Code No. : 1107

(ஆ) மதிப்பு காண்க
$$\int \frac{dx}{(3+x)\sqrt{x}}$$
.

Evaluate
$$\int \frac{dx}{(3+x)\sqrt{x}}$$
.

18. (அ) D என்பது $x = y^2$, x = 2 - y, y = 0, y = 1ஆகியவற்றால் அடைபடும் பகுதி எனில் $I = \iint_D xy dy \ dx$ ன் மதிப்பு காண்க.

> Evaluate $I = \iint_D xy dy dx$ where D is the region bounded by the curve $x = y^2$, x = 2 - y, y = 0 and y = 1.

Or

(ஆ) x = 0, y = 0, z = 0, x/a + y/b + z/c = 1 ஆகிய தளங்களால் அடைபடும் டெட்ராகெட்ரான் கொள்ளளவை முப்பரிமானத் தொகையிடல் மூலம் காண்க.

Find by triple integral the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

19. (அ) $\overline{f} = (2y+3)\overline{i} + xz\overline{j} + (yz-x)\overline{k}$ மற்றும் C என்பது பின்வரும் பாதைகள் எனில் $\int_C \overline{f} \cdot d\overline{r}$ ன் மதிப்பு காண்க.

(i)
$$x = 2t^2$$
; $y = t$; $z = t^3$ $t = 0$ (ppsi) $t = 1$ a)

(ii) $A = (0,0,0), \quad B = (0,0,1), \quad C = (0,1,1),$ D = (2,1,1) எனும்போது கோட்டுத்துண்டு AB, BC, CD வழியாகச் செல்லும் பலபக்கப்பாதை *P*யில்

(iii) (0,0,0) மற்றும் (2,1,1)ஐ இணைக்கும் நேர்கோட்டின் வழியாக.

If $\overline{f} = (2y+3)\overline{i} + xz\overline{j} + (yz-x)\overline{k}$ evaluate $\int_{C} \overline{f} \cdot d\overline{r}$ along the following paths C

(i)
$$x = 2t^2$$
; $y = t$; $z = t^3$ from $t = 0$ to $t = 1$.

(ii) The polygonal path P consisting of the three lines segments AB, BC, CD where A = (0,0,0), B = (0,0,1), C = (0,1,1) and D = (2,1,1).

(iii) The straight line joining (0,0,0) and (2,1,1).

Page 12 Code No. : 11071

(ஆ) $\overline{f} = y^2 \overline{i} + y \overline{j} - xz \overline{k}$ மற்றும் S என்பது $x^2 + y^2 + z^2 = a^2$ மற்றும் $z \ge 0$ என்ற கோளத்தின் மேல் அரைப்பகுதி எனில் $\iiint_S (\nabla \times \overline{f}) \cdot \overline{n} \ dS$ ன்

மதிப்பு காண்க.

Evaluate $\iint_{S} (\nabla \times \overline{f}) \cdot \overline{n} \, dS$ where $\overline{f} = y^{2}\overline{i} + y\overline{j} - xz\overline{k}$ and S is the upper half of the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ and $z \ge 0$.

20. (அ) xoy என்ற தளத்தால் அடைபடும் அரைக்கோளம் மற்றும் $x^2 + y^2 + z^2 = a^2$ என்ற கோளத்தின் மேல் அரைப்பகுதிகளில் $\overline{f} = a (x + y)\overline{i} + a (y - x)\overline{j} + z^2 \overline{k}$ க்கு காஸ் விரிவாகத் தேற்றத்தைச் சரிபார்க்க.

Verify Gauss divergence theorem for the function $\overline{f} = a(x+y)\overline{i} + a(y-x)\overline{j} + z^2\overline{k}$ over the hemisphere bounded by the xoy plane and the upper half of the sphere $x^2 + y^2 + z^2 = a^2$.

Or

