Reg. No.: (8 pages)

Sub. Code: CEMA 54 Code No.: 30444 E

> B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.

> > Fifth Semester

Mathematics — Major Elective

OPERATIONS RESEARCH - I

(For those who joined in July 2021-2022 only)

Maximum: 75 marks Time: Three hours

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- If the constraints of an LPP is ≤ type, then the variable to be added is
 - (a) slack
- (b) surplus
- (c) artificial
- (d) none
- Any solution to a general LPP which satisfies non negative restrictions of the problem is called a — to the general LPP.
 - (a) solution
- feasible solution
- (c) optimum solution (d) negative solution

- The cost of surplus variable is
 - (a) 1

(b) -1

(c)

- (d) M
- The Big-M method is also known as
 - Penalty method
- (b) Simplex method
- Both (a) and (b)
- (d) None of the above
- In a transportation problem feasible solution exists when the number of basic cell is
 - m+n-1
- (b) m+n+1
- m-n-1
- (d) m n + 1
- A transportation problem is balanced if
- (c) $\sum_{i=1}^{m} a_i < \sum_{i=1}^{n} b_i$ (d) $\sum_{i=1}^{m} a_i > \sum_{i=1}^{n} b_i$
- The optimum assignment is
 - N = n
- $N \neq n$
- N < n
- (d) N > n
- The algorithm to solve the assignment problem was developed by
 - D konig
- Charnes
- F.L. Hitchcock
- (d) Kuhn

Page 2 Code No.: 30444 E

- 9. The assignment problem is balanced if
 - (a) the number of rows and columns are equal
 - (b) the number of rows and columns are not equal
 - (c) number of rows is less than the number of columns
 - (d) number of rows is greater than the number of columns
- 10. In a sequencing algorithm, no passing rule is
 - (a) the order of the first and last job
 - (b) order in which the machines complete the job
 - (c) the same order of jobs is maintained over each machine
 - (d) none

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Solve graphically:

Maximize:
$$z = 3x_1 + 2x_2$$

Subject to:

$$x_1 - x_2 \le 1$$

$$x_1 + x_2 \ge 3$$

$$x_1, x_2 \ge 0.$$

Or

(b) Define slack and surplus variables.

Page 3 Code No.: 30444 E

12. (a) Write the dual of Maximize $z = 2x_1 + x_2$ Subject to

$$x_1+2x_2\leq 10$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 2$$

$$x_1 - 2x_2 \le 1$$

$$x_1, x_2 \ge 0.$$

(b) Use dual simplex method to solve the following LPP

Minimize $z = 3x_1 + x_2$

Subject to the constraints

$$x_1 + x_2 \ge 1$$

$$2x_1 + 3x_2 \ge 2$$

$$x_1 \ge 0, x_2 \ge 0.$$

13. (a) Obtain an initial basic feasible solution to the following transportation problem by North – West corner rule.

	D	E	F	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
Demand	200	225	275	250	

Or

b) Explain Vogel's approximation method in transportation problem.

Page 4 Code No.: 30444 E

[P.T.O.]

14. (a) Write the mathematical formulation of an assignment problem.

Or

(b) Solve the following assignment problem

1 2 3 A 120 100 80 B 80 90 110

C 110 140 120

15. (a) Solve the following sequencing problem:

Job: 1 2 3 4 5 6

 $M_1:$ 3 12 15 6 10 11 9

 $M_2:$ 8 10 10 6 12 1 3

Or

(b) Explain the procedure for solving n jobs and 2 machines in sequencing problem.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Use simplex method to solve the following LPP

Maximize $z = x_1 + x_2 + 3x_3$

Subject to

Page 5 Code No.: 30444 E

$$3x_1 + 2x_2 + x_3 \le 3$$

$$2x_1 + x_2 + 2x_3 \le 2$$

$$x_1, x_2, x_3 \ge 0.$$
Or

- (b) Explain simplex method.
- 17. (a) Use Penalty method to solve

Maximize $z = 3x_1 + 2x_2 + 3x_3$

Subject to

$$2x_1 + x_2 + x_3 \le 2$$

$$3x_1 + 4x_2 + 2x_3 \ge 8$$

$$x_1, x_2, x_3 \ge 0.$$

Or

(b) Solve the following LPP using dual simplex method.

Minimize $z = 2x_1 + 3x_2$

Subject to

$$2x_1 + 3x_2 \le 30$$

$$x_1 + 2x_2 \ge 10$$

$$x_1, x_2 \ge 0.$$

Page 6 Code No.: 30444 E

18. (a) Explain the MODI method in transportation problem.

Or

(b) Solve the transportation problem and find the optimum solution.

1 2 3 4 Availability

20

A 10 8 11 7

B 9 12 14 6 40

C 8 9 12 10 35

Demand 16 18 31 30

19. (a) Explain Hungarian method in assignment problem.

Or

(b) Solve the following assignment problem

A B C D E

1 32 38 40 28 40

2 40 24 28 21 36

3 41 27 33 30 37

4 22 38 41 36 36

5 29 33 40 35 39

Page 7 Code No.: 30444 E

20. (a) Solve the following sequencing problem

Machines

Jobs M₁ M₂ M₃ M₄

A 13 8 7 14

B 12 6 8 19

C 9 7 5 15

D 8 5 6 15

Or

(b) Solve the given sequencing problem in the order ABC

Jobs: 1

1 2 3 4 5 6

Machine A: 12 10 9 14 7 9

Machine B: 7 6 6 5 4 4

Machine C: 6 5 6 4 2 4

Page 8 Code No.: 30444 E