Reg. No. :....

Sub. Code: EEMA 11 Code No.: 20654 E

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

First Semester

Mathematics

Elective - ALGEBRA AND DIFFERENTIAL **EQUATIONS**

(For those who joined in July 2023 onwards)

Maximum: 75 marks Time: Three hours

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

- One of the roots of the reciprocal equation $6x^6 - 25x^5 + 31x^4 - 31x^2 + 25x - 6 = 0$ is

(b) -2

- (d) 0
- The equation whose roots are 10 times those of the equation $x^3 + 3x - 5 = 0$ is _____.

 - (a) $x^3 + 3x 50 = 0$ (b) $x^3 + 30x 50 = 0$
 - (c) $x^3 + 30x 500 = 0$ (d) $x^3 + 300x 5000 = 0$

- 3. If the equation $2x^3 3x^2 + 2x 3 = 0$ has one root i, then its real root is _____

 - (a) $\frac{2}{3}$ (b) $-\frac{2}{3}$

- One root of $x^4 3x + 1 = 0$ lies between

 - (a) 2 and 3 (b) 2 and 2.5
 - (c) 2.5 and 3
- (d) 1 and 2
- Horner's method can be used to get the roots of the equation f(x) = 0.
 - (a) rational
- (b) integers
- (c) positive integers (d) irrational
- The characteristic equation of the matrix
 - (a) $x^2 + 2x + 1 = 0$ (b) $x^2 2x + 1 = 0$
 - (c) $x^2 + 2x 1 = 0$ (d) $x^2 2x 1 = 0$
- The general solution of the differential equation y - P(x+1) = P is _____
 - (a) y = P(x + 2) (b) y = cx
- - (c) y = cx + 2c (d) y = c(x+1)

Page 2 Code No.: 20654 E

- The value of $L(\cosh at)$ is _____.
 - (a) $\frac{s}{s^2 + a^2}$ (b) $\frac{a}{s^2 + a^2}$
 - (c) $\frac{s}{s^2 a^2}$ (d) $\frac{a}{s^2 a^2}$
- 9. The value of $L^T\left(\frac{1}{s^2}\right)$ is _____

- (a) t (b) $2t^2$ (c) $t^2/2$ (d) $\frac{2}{t^2}$
- 10. The solution of 2p + 3q = 1 is _
 - (a) $\phi(2x-3y, y+3z)=0$
 - (b) $\phi(2x-3y, y-3z)=0$
 - (c) $\phi(3x-2y, y-3z)=0$
 - (d) $\phi(3x-2y, 3y-z)=0$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Solve the equation $x^4 - 5x^3 + 4x^2 + 8x - 8 = 0$ if one of whose roots is $1-\sqrt{5}$.

Or

Form the equation with rational coefficients one of whose roots is $\sqrt{2} + \sqrt{3}$.

Page 3 Code No. : 20654 E

12. (a) Diminish the roots of the equation $x^3 + x^2 + x - 100 = 0$ by 4.

Or

- Find by Newton's method the root of the equation $x^3 - 3x + 1 = 0$ which lies between 1 and 2.
- Find the inverse of the matrix $A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix} \quad \text{using} \quad \text{Cayley-Hamilton}$ theorem.

Or

- (b) Calculate A^4 when $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.
- 14. (a) Solve: $P^3 6p^2 + 11p 6 = 0$.

- (b) Solve: $y = p \sin p + \cos p$.
- 15. (a) Find $L(e^{-ax}\cos bx)$.

(b) Find $L^T \left(\frac{1}{(s+3)^2 + 25} \right)$.

Page 4 Code No.: 20654 E

[P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Solve the equation $8x^4 - 90x^3 + 315x^2 - 405x + 162 = 0$ given that the roots are in geometric progression.

Or

- (b) Solve: $6x^6 5x^5 44x^4 + 44x^2 + 5x 6 = 0$.
- Find the positive root of $x^3 x 3 = 0$ by Horner's method correct to two places of decimals.

Or

- (b) Find by Newton's method correct to 3 places of decimals the root between 0 and 1 of the equation $3x - \cos x - 1 = 0$.
- Find the eigen values and eigen vectors of 18. (a) the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.
 - Find the inverse of the matrix $\begin{pmatrix} 3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$

using Cayley-Hamilton theorem.

Page 5 Code No.: 20654 E

19. (a) Solve: $3x - y + \log p = 0$. Or

(b) Solve: $p \cot x + q \cot y = \cot z$.

20. (a) Find $L(t^2 + \cos 2 + \cos t + \sin^2 2t)$.

(b) Find $L^T \left\lceil \log \left(\frac{s+a}{s+b} \right) \right\rceil$.