(6 Pages) **Reg. No. :**

Code No. : 6865 Sub. Code : PPHM 41

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester

Physics - Core

QUANTUM MECHANICS - II

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

- 1. The eigen function of *Lz* are
 - (a) $\Psi = e^{im\varphi}$ (b) $\Psi = e^{im\varphi}f(r,\theta)\psi^*$ (c) $\Psi = e^{im\varphi}f(r,\theta)$ (d) $\Psi = e^{im\varphi}\psi^*$
- 2. The orbital angular momentum for particle system is defined by
 - (a) $Lij = x_i p_j + x_j p_i$ (b) $Lij = x_i p_j x_j p_i$
 - (c) $Lij = x_i p_j * x_j p_i$ (d) $Lij = x_i p_j / x_j p_i$

3.		Represents	the	operator
	$((-\hbar/2m)\nabla^2 + V)$).		

- (a) Perturbed Hamiltonian
- (b) Unperturbed Hamiltonian
- (c) Hamiltonian H
- (d) Eigen functuations ψ
- 4. The Eigen function ψ_n for the perturbed system must satisfy the condition
 - (a) $H\psi_n = E_n\psi_n$ (b) $H\psi_n = E\psi$ (c) $H\psi_n = E_n/\psi_n$ (d) $H_n\psi_n = E_n\psi_n$
- 5. In case of _____ the Hamiltonian changes slowly with time.
 - (a) Transition probability
 - (b) Sudden approximation
 - (c) Adiabatic Perturbations
 - (d) Constant perturbation
- 6. In case of $E_m^{(0)}$ is ______ from $E_1^{(0)}$, then the probability is small.
 - (a) Closest (b) Far away
 - (c) Middle (d) None of the above

Page 2 Code No. : 6865

- 7. Scattering of _____ gives an idea about the magnetic properties of the nucleus.
 - (a) Nucleons
 - (b) High energy electrons
 - (c) Neutrons
 - (d) Mesons
- 8. $\Sigma(w)$ is known as _____ of the particle by the target in the direction (θ, φ) .
 - (a) Differential scattering cross section
 - (b) Scattering cross section
 - (c) Total scattering cross section
 - (d) Scattering amplitude
- 9. E is defined by the operator
 - (a) $E = i \hbar \Box$ (b) $E = i \hbar (.\partial / .\partial t)$
 - (c) $E = h / 2\pi i$ (d) $E = i \hbar / 2\pi i$
- 10. A ______ in relativistic quantum mechanics will have positive and negative energy eigen values.
 - (a) Particle in box
 - (b) Particle in square well potential
 - (c) Free Particle
 - (d) Particle in electromagnetic field

Page 3 Code No. : 6865

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Determine the expression for L^2 .

Or

- (b) Describe the Eigen functions of L^2 and L_2 .
- 12. (a) Write notes on time dependent perturbation theory.

Or

- (b) Discuss the perturbation theory for non-degenerate case.
- 13. (a) Derive an expression for first order time dependant perturbation theory.

Or

- (b) Explain transition probability.
- 14. (a) Discuss about centre of mass and laboratory co-ordinate systems.

Or

(b) Derive an expression for scattering amplitude.

Page 4 Code No. : 6865 [P.T.O] 15. (a) Discuss about spin of Dirac equation.

Or

(b) Discuss about spin orbit energy.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Evaluate the matrix form of Lx and Ly.

Or

- (b) Discuss in detail about the addition of angular momentum.
- 17. (a) Discuss in detail applications on non degenerate levels.

Or

- (b) Describe briefly about first order stark effect in hydrogen atom.
- 18. (a) Discuss in detail about adiabatic Perturbations.

 \mathbf{Or}

(b) Determine the Einstein coefficients of transition probability.

Page 5 **Code No. : 6865**

19. (a) Discuss in detail about born approximation.

 \mathbf{Or}

- (b) Discuss about scattering form of square well systems.
- 20. (a) Derive Klein-gorden equation for a free particle.

Or

(b) Discuss about hydrogen atom under relativistic condition.

Page 6 **Code No. : 6865**