Reg. No.	:	
----------	---	--

Code No.: 41169 E Sub. Code: JMMA 5 E/ JMMC 5 E

> B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2018.

> > Fifth Semester

Mathematics - Main

Optional Elective II — OPERATIONS RESEARCH

(For those who joined in July 2016 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. The leading element in a simplex table is called
 - (a) pivotal element
 - (b) minimum element
 - (c) bounded element
 - (d) unbounded element

(b) A contractor has to supply 10,000 bearings per day to an automobile manufactures. He find that when he starts a production run, he can produce 25,000 bearings per day. The cost of holding a bearing in stock. Per one year is 2 paise and the set up cost of a production run is Rs. 18. How frequently should production be made?

Page 10 Code No.: 41169 E

	constraints of $\leq t$ straints of \geq type.		a subtracted from		
(a)	Slack	(b)	Surplus		
(c)	Neutral	(d)	None		
The	other name for le	ast test	method is —		
(a)	matrix minima	nethod			
(b)	column minima method				
(c)	row-minima met	hod			
(d)	none '				
In	the optimum so		The second second		
	olem, a given row e	or colu	mn of the cost m		
hav					
hav (a)	no assignment	(b)	< 0 assignment		
hav (a) (c)	no assignment	(b) (d)	< 0 assignment		
hav (a) (c)	e no assignment ≥2 assignment	(b) (d)	< 0 assignment		

).	our	itegy is a					
•	(a)	decision rule	8 %				
	(b)	dominance rule					
	(c)	value of the giver	game				
	(d)	none					
	The	term commonly us	ed for	activity slack time is			
	(a)	free float	(b)	independent float			
	(c)	total float	(d)	all of these			
3.	7. S	developed Co	ritical	Path Method (CPM).			
	(a)	Walker	(b)	Lemke			
	(c)	T.C. Koopmans	(d)	None			
).	Hole	ding cost is also cal	led —				
	(a)	set up cost					
	(b)	carrying cost					
	(c)	repelenishment c	ost				
	(d)	none					
0.	The	economic order qua	antity	is given by ———			
	(a)	$q^* = \sqrt{\frac{2c_3r}{c_3}}$	(b)	$q^* = \sqrt{2c_1c_3r}$			

(d) none

Page 3 Code No.: 41169 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

11. (a) Define basic solution, basic feasible solution, degenerate solution.

Or

(b) Solve using simplex method:

Maximize $z = x_1 + 4x_2 + 5x_3$

Subject to:

$$3x_1 + 3x_2 \le 22$$

$$x_1 + 2x_2 + 3x_3 \le 14$$

$$3x_1 + 2x_2 \le 14$$

$$x_1, x_2, x_3 \ge 0.$$

12. (a) Solve the following transportation problem.

Sources	1	2	3	Capacities
1	2	2	3	10
2	4	1	2	15
3	1	3	0	40
Domand	20	15	30	F 4 14

Or

(b) Describe an assignment problem.

Page 4 Code No.: 41169 E

(a) Consider the game with the following pay-off matrix.

B

$$\begin{array}{cccc}
 & B_1 & B_2 \\
A & A_1 & 2 & 6 \\
 & A_2 & -1 & \mu
\end{array}$$

- (i) Show that the μ -same is strictly determinable.
- (ii) Find the value of the game.

Or

- (b) Explain:
 - (i) Two person zero sum game and
 - (ii) Pure and mixed strategies.
- 14. (a) Write notes on slack and floats in network.

Or

(b) Construct a network diagram for the following:

Operations Post operations

Page 5 Code No.: 41169 E

15. (a) Derive the fundamental EOQ formula.

Or

(b) Consider the inventory system with the following data in usual notation.

r = 1000 units/year I = 0.30 P = Rs. 0.50/unit

 $C_3 = \text{Rs. } 10$

L = 2 years (Lead time)

Determine the following:

- (i) Optimal order quantity
- (ii) Reorder point
- (iii) Minimum average list.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

16. (a) Solve the following L.P.P by simplex method.

 $Maximize z = x_2 - 3x_3 + 2x_5$

Subject to: .

$$3x_2 - x_3 + 2x_5 \le 7$$
$$-2x_2 + 4x_3 \le 12$$
$$-4x_2 + 3x_3 + 8x_5 \le 10$$
$$x_2, x_3, x_5 \ge 0.$$

Or

Page 6 Code No.: 41169 E

(b) Test the nature of the following system of linear equations.

$$2x_1 + x_2 = 3$$

$$x_1 + x_2 = 1.$$

17. (a) Solve the following transportation problem.

 D_1 D_2 D_3 D_4 Supply

$$O_1$$
 23
 27
 16
 18
 30

 O_2
 12
 17
 20
 51
 40

 O_3
 22
 28
 12
 32
 53

Demand 22 35 25 41 123

Or

(b) Solve the following assignment problem.

Page 7 Code No.: 41169 E

Solve the following game graphically.

Player B

Player
$$A = \begin{pmatrix} -4 & 3 \\ -7 & 1 \\ -2 & -1 \\ -5 & -2 \\ -1 & -6 \end{pmatrix}$$

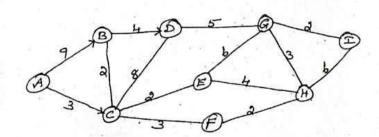
Or

Solve the game whose pay off matrix is given

BI II III IV II III A IV

Code No.: 41169 E Page 8

Draw a network for the following project. Also find the critical path and the duration.


- H I Job:

BBD Predecessor: FD EG H

Time (days): 15 10 10

Or

Find the critical path for the following network.

Explain Economic lot size model with 20. uniform rate of demand, infinite production rate and having no shortages.

Or

Code No.: 41169 E