Reg. No.: (6 pages) Code No.: 6435 Sub. Code: ZCSM 11 M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022. First Semester Computer Science — Core DESIGN AND ANALYSIS OF ALGORITHMS (For those who joined in July 2021 onwards) Time: Three hours Maximum: 75 marks PART A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions. Choose the correct answer: 1. Heap is a Tree structure Complete binary tree Binary tree

Search tree

2.	of an algorithm is the amount of	time		
	required for it to execute.			

- (a) Time complexity
- (b) Space complexity
- (c) Compiling time
- (d) Best case
- 3. What is the worst case time complexity of the Quick sort?
 - (a) $O(n \log n)$
- (b) O(n)
- (c) $O(n^3)$
- (d) $O(n^2)$
- 4. Strassen's matrix multiplication algorithm follows technique.
 - (a) Greedy technique
 - (b) Dynamic Programming
 - (c) Divide and Conquer
 - (d) Backtracking
- 5. Kruskal's algorithm is a
 - (a) Divide and conquer algorithm
 - (b) Dynamic programming algorithm
 - (c) Greedy algorithm
 - (d) Approximation algorithm

Page 2 Code No.: 6435

	The using		esman pro	blem can be solved		
((a)	A spanning tree				
((b)	A minimum spanning tree				
((c)	Bellman – Ford algorithm				
. ((d)	DFS traversa	l			
Carried In Contract	The imple	Data struementation of	icture u Breadth Fi			
,	(a)	Stack	(b)	Queue		
	(c)	Linked List	(d)	Tree		
	What is the traversal strategy used in the binary tree?					
	(a)	depth-first tr	aversal			
	(b)	b) breadth-first traversal				
6/4 T	(c)	random trave	rsal			
	(d)	priority trave	rsal			
	How many steps are required to prove that a decision problem is NP complete?					
	(a)	1	(b)	2		
	(c)	3	(d)	4		
			Page 3	Code No. : 6435		

- 10. Which data structure is most suitable for implementing best first branch and bound strategy?
 - (a) stack
- (b) queue
- (c) priority queue
- (d) linked list

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Identify the criteria that must satisfy all algorithms.

Or

- (b) Discuss about Space Complexity.
- 12. (a) Develop the algorithm Control abstraction for divide-and-conquer.

Or

- (b) Explain about finding the maximum and minimum.
- 13. (a) Analyze Prim's Algorithm.

Or

(b) Illustrate knapsack problem.

Page 4 Code No.: 6435

[P.T.O.]

 (a) Evaluate the algorithm Preorder and postorder traversals.

Or

- (b) Justify graph coloring.
- 15. (a) Construct the Job Shop Scheduling.

Or

(b) Construct the Directed Hamiltonian Cycle.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Summarize about Priority Queues.

Or

- (b) Illustrate about Graphs.
- 17. (a) Explain about Binary Search.

Or

(b) Briefly explain about Quick Sort.

Page 5 Code No.: 6435

18. (a) Organize the High-level description of job sequencing algorithm.

Or

- (b) Analyze optimal binary search trees.
- 19. (a) Evaluate the techniques for graphs.

Or

- (b) Justify the recursive backtracking algorithm.
- 20. (a) Express 0/1 knapsack problem.

Or

(b) Generalize FIFO Branch-and-Bound solution.

Page 6

Code No.: 6435