(7 p	ages) Re	g. No. :	3.		f every subspace of X is normal then the space X is ————		
Code No.: 5386 Sub. Code: ZMAM 44			(a) Completely normal				
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024 Fourth Semester Mathematics — Core			(b) Lindelöf (c) Locally compact (d) Regular				
	TOPOLOGY — II			A closed subspace of a normal space is —			
	(For those who joined i	n July 2021 – 2022)		(a)	Regular	(b)	Compact
Tim	e : Three hours	Maximum: 75 marks		(c)	Normal	(d)	Dense
PART A — $(10 \times 1 = 10 \text{ marks})$		5.					
	Answer ALL questions.			11 X	has		
	Choose the correct answ	er:		(a)	Countable basis	(b)	Uncountable basis
1.	A space that has a cour points is said to be ———	ntable basis at each of its		(c)	Covers	(d)	Closed sets
	(a) Second countable(c) Hausdorff	(b) First countable (d) Dense	6.	A space X is — if each point x of X has a neighborhood that is metrizable in the subspace topology.			
2.	A subset A of a space X is said to be dense if			(a)	Countable basis	(b)	Locally metrizable
	(a) $A = X$	(b) $A = \overline{A}$		(c)	Homeomorphic	(d)	Complete
	(c) $A = \phi$	(d) $\overline{A} = X$					

Code No.: 5386

Page 2

- - (a) Locally finite
- (b) Metrizable
- (c) Refinement
- (d) Countably finite
- 8. A collection A of subsets of X has the countable intersection property if every countable intersection of elements of A is ————.
 - (a) Empty
- (b) Constant 0
- (c) Nonempty
- (d) Infinite
- A Space X is a if and only if every non empty open set in X is of the second category.
 - (a) Baire space
- (b) Empty interior
- (c) Hausdorff space
- (d) Lindelöf
- 10. If A contains no open set of X other than the empty set then A has ————.
 - (a) Interior
- (b) Empty
- (c) Empty interior
- (d) Second category

Page 3 Code No.: 5386

PART B — $(5 \times 5 = 25 \text{ marks})$ s

Answer ALL questions, choosing either (a) or (b).

11. (a) Show that if X is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.

Or

- (b) Let X be a topological space in which one point sets are closed prove that X is regular if and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x such that $\overline{V} \subset U$.
- 12. (a) Prove that every compact Hausdorff space is normal.

Or

- (b) Prove that a subspace of a completely regular space is completely regular and product of completely regular space is completely regular space is completely regular.
- 13. (a) State and prove imbedding theorem.

Or

(b) Give an example that a Hausdorff space with a countable basis need not be metrizable.

Page 4 Code No.: 5386 [P.T.O.]

- 14. (a) Let X be a set \mathfrak{P} be a collection of subsets of X that is maximal with respect to the finite intersection property. Then prove that
 - (i) Any finite intersection of elements of \mathfrak{P} is an element of \mathfrak{P} .
 - (ii) If A is a subset of X that intersects every element of \mathfrak{D} then A is an element of \mathfrak{D} .

Or

- (b) Let A be a locally finite collection of subsets of X then prove
 - (i) The collection $B = {\overline{A}}_{A \in \mathcal{A}}$ of the closures of the elements of \mathcal{A} is locally finite.
 - (ii) $\overline{\bigcup_{A \in \mathcal{A}}} = \bigcup_{A \in \mathcal{A}} \overline{A}$
- 15. (a) Prove that any open subspace Y of a Baire space X is itself a Baire space.

Or

(b) Show that every locally compact Hausdorff space is a baire space.

Page 5 Code No.: 5386

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Prove that a subspace and product of Hausdorff space is Hausdorff. Also prove that a subspace and product of a regular space is regular.

Or

- (b) Give an example for a space that is Hausdorff but not regular. Also prove that the space R_e is normal.
- 17. (a) State and prove Urysohn lemma.

Or

- (b) Prove that every regular space with a countable basis is normal.
- 18. (a) State and prove Tietze extension theorem.

Or

(b) Prove that every regular space X with a countable basis is metrizable.

Page 6 Code No.: 5386

19. (a) Let X be a metrizable space. If A is an open covering of X, then prove that there is an open covering \in of X refining A that is countably locally finite.

Or

- (b) Prove that an arbitrary product of compact spaces is compact in the product topology.
- 20. (a) Let X be a space let (y,d) be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions such that $f_n(x) \to f(x)$ for all $x \in X$. Where $f: X \to Y$. Prove that if X is a Baire space then the set of points at which f is continuous is dense in X.

Or

(b) State and prove Baire category theorem.

Page 7