Reg. No. :

Code No.: 7133

Sub. Code: PMAM 41

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Fourth Semester

Mathematics - Core

FUNCTIONAL ANALYSIS

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. T is a bounded linear transformation if for every x and $k \ge 0$ s.t
 - (a) $||T(x)|| \le k$
- (b) $||T(x)|| \le kx$
- (c) $||T(x)|| \le k ||x||$
- (d) $||T(x)|| < \infty$
- 2. ||x| ||y|| |x y|
 - (a) s

(b) ≥

(c) <

(d) >

- 3. For every G in N^x , $F_{dx}(f) =$
 - (a) $F_x(\alpha f)$
- (b) $(\alpha F_x)(f)$
- (c) $F_{\nu}(F(\alpha))$
- (d) $(xF_a)(f)$
- If X is a compact Hausdorff space, than \$\mathbb{C}\$ (X) is reflexive if and only if
 - (a) X is an infinite set
 - (b) X is a finite set
 - (c) X is a bounded set
 - (d) X is not empty
- 5. If S is a non-empty subset of a Hilbert space than
 - (a) $S^{\perp \perp} = S^{\perp}$
- b) $S^{\perp 1} = S^{\perp \perp 1}$
- (c) $S^{\perp} = S^{\perp \perp \perp}$
- (d) $S^{\perp \perp \perp \perp} = S^{\perp \perp}$
- 6. If $\{e_i\}$ is on orthonormal set in a Hilbert space H then $\sum |(x,ei)|^2 \le ||x||^2$ for every $x \in H$ is called
 - (a) Schwarz inequality
 - (b) Bassel's inequality
 - (c) Triangle inequality
 - d) Spectral inequality

Page 2 Code No. : 7133

- 7. Let $\{e_i\}$ be an orthonormal set in a Hilbert space H. Then $\{e_i\}$ is complete is equivalent to
 - (a) $x \perp \{e_i\} \Rightarrow x \neq 0$
 - (b) If x is an arbitrary vector is H then $x = \Sigma(x,e_i) e_i$
 - (c) Both (a) and (b) are equivalent
 - (d) Neither (a) nor (b) is true
- Let H be a Hilbert space and T* be adjoint of the operator T which one of the following is true
 - (a) $(\alpha T)^* = \alpha T^*$
- (b) $(\alpha T)^* = \overline{\alpha} T^*$
- (c) $(T_1T_2)^* = T_1 * T_2 * (d) ||T * T|| = ||T||$
- 9. If N is a normal operator on H then $|N^2| =$
 - (a) 1

(b) 0

(c) |N|

- (d) |N|2
- 10. If P is a projection on a Hilbert space H. Then one of the following is false
 - (a) P is a positive operator on H
 - (b) $||Px|| \le ||x||$ for every $x \in H$
 - (c) ||P||≤1
 - (d) None of them is true

Page 3 Code No.: 7133

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If M is a closed linear subspace of a normed linear space N and x_0 is a vector not in M, then prove that there exists a functional f_0 in N^* such that $f_0(m) = 0$ and $f_0(x) \neq 0$.

Or

- (b) Let T be a linear transformation of a normal linear space N into N*. Prove that T is continuous if and only if it is bounded.
- 12. (a) If P is a projection on a Banach space B and if M and N are its range and null space, then show that M and N are closed linear subspaces of B such that $B = M \oplus N$.

Or

- (b) State and prove closed graph theorem.
- (a) State and prove the uniform boundedness theorem.

Or

(b) Show that a closed convex set C of a Hilbert space H contains a unique vector of smallest norm.

> Page 4 Code No.: 7133 [P.T.O.]

14. (a) Show that $O^* = O$ and $I^* = I$. Use the later to show that if T is non-singular, then T^* is also non-singular and that in this case $(T^*)^{-1} = (T^{-1})^*$.

Or

(b) Prove that the adjoint operator T → T * on (H) has the following properties

(i)
$$(T_1 + T_2)^* = T_1^* + T_2^*$$

(ii)
$$\|T * T\| = \|T\|^2$$
.

15. (a) If T is an operator on H then show that T is normal if and only if its real and imaginary parts commute.

Or

(b) If T is normal, then prove that x is on eigen vector of T with eigen value λ if and only if x is an eigen vector of T^* with eigen value $\overline{\lambda}$.

Page 5 Code No.: 7133

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Let M be a closed linear subspace of a normed linear space N. Prove that N/M is a normed linear space. Also prove that if N is a Banach space then so is N/M.

Or

- (b) State and prove Hahn-Banach theorem.
- 17. (a) State and prove open mapping theorem.

Or

- (b) If N is a normed linear space, then show that the closed unit sphere S* and N* is a compact Hausdorff space in the weak * Eopology.
- 18. (a) If B is a complex Banach space whose norms obeys the parallelogram law and if an inner product is defined by $4 < x, y >= ||x + y||^2 ||x y||^2 + i||x + iy||^2 i||x iy||^2$ then prove that B is a Hilbert space.

Or

(b) Let M and N be closed linear subspaces of a Hilbert space H. If $M \perp N$ then show that the linear sub-space M + N is closed and also prove that $H = M \oplus M^{\perp}$.

Page 6 Code No. : 7133

19. (a) Let H be a Hilbert space and let f be an arbitrary functional in H^* . Then show that there exists a unique vector y in H such that $f(x) = \langle x, y \rangle$ for every vector x in H.

Or

- (b) Prove that the self-adjoint operators in (H) from a closed real linear subspace of (H) and therefore a real Banach space which contains the identify transformation.
- 20. (a) Let T be an operator on H and prove the following
 - (i) T is singular (z) $0 \in \sigma(T)$
 - (ii) If T is non-singular, then $\lambda \in \sigma(T)$ if and only if $\lambda^{-1} \in \sigma(T^{-1})$
 - (iii) If A is non-singular then $\sigma(ATA^{-1}) = \sigma(T)$
 - (iv) If $T^K = 0$ for some positive integer K, then $\sigma(T) = \{0\}$.

Or

Page 7 Code No.: 7133

- (b) (i) If N_1 and N_2 are normal operators on H with the property that either commutes with the adjoint of the other, then show that $N_1 + N_2$ and $N_1 N_2$ are normal.
 - (ii) An operator T on H is normal if and only if ||T * x|| = ||Tx|| for every x.

Page 8 Code No.: 7133