Code No.: 5833 Sub. Code: PMAM 13

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

First Semester

Mathematics - Core

ANALYTIC NUMBER THEORY

(For those who joined in July 2017 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. If a prime p does not divide a, then (p,a)=
 - (a) 1

(b) 0

(c) -1

- (d) 2
- 2. If d/n implies
 - (a) m/d
- (b) d/m
- (c) ad/an
- (d) 0/d

3.			n=1,		Э	Mobius	function
	(a)	1			(b)	0	
	(c)	- 1			(d)	2	
4.	Dirichlet multiplication is ———.						
	(a)	Con	ımutativ	e	(b)	Associative	e
	(c)	Both	n (a) and	(b)	(d)	Distributiv	ve
5.	The identity function $I(n) = \left[\frac{I}{n}\right]$ is ———.						
	(a) not multiplicative						
	(b) multiplicative						
	(c) completely multiplicative						
	(d) Additive						
6.	The Euler totient $\varphi(n)$ is ———.						
	(a) not multiplicative						
	(b) multiplicative						
	(c) completely multiplicative						
	(d)	mul	tiplicativ	ve ·	but	not	completely

multiplicative

Page 2 Code No.: 5833

7. $N'(r) = X(1 + \sum \varphi(n)), z \le n \le r$ and x = ----

(a) 1

(b) 4

(c) 6

(d) 8

8. \wedge (n) has average order —

(a) 0

(b) 1

(c) -1

(d) 2

9. For $x \ge 1$, we have $\sum_{n \ge x} \mu(x) \left[\frac{x}{n} \right] = -$

(a) 0

(b) 1

(c) -1

(d) 2

10. $\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = ---$

(a) 0

(b) 1

(c) -1

(d) 2

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Prove that every integer n > 1 is either a prime or a product of prime numbers.

Or

(b) Prove that (ac, bc) = |c|(a, b).

Page 3 Code No.: 5833

12. (a) Prove that for all f we have I * f = f * I = f.

Or

- (b) If $n \ge 1$, prove that $\wedge (n) = \sum_{d/n} \mu(d) \log \frac{n}{d} =$
 - $-\sum_{d/n} \mu(d) \log d$.
- 13. (a) If f is multiplicative then prove that

$$\sum_{d \mid n} \mu(d) f(d) = \prod_{p \mid n} (1 - f(p)).$$

Or

- (b) For $n \ge 1$, prove that $\sigma_{\alpha}^{-1}(n) = \sum_{d \mid n} d^{a} \mu(d) \mu\left(\frac{n}{d}\right).$
- 14. (a) If $x \ge 1$, prove that $\sum_{n \le x} n^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} + 0(x^{\alpha})$ if $\alpha \ge 0$.

Or

(b) For all $x \ge 1$, prove that $\sum_{n \le x} \varphi(n) = \frac{3}{\pi^2} x^2 + 0(x \log x).$

Page 4 **Code No.: 5833** [P.T.O.]

Or

(b) For $x \ge 2$, prove that

$$\pi(x) = \frac{g(x)}{\log x} + \int_{2}^{x} \frac{g(t)}{t \log^{2} t} dt.$$

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) State and prove the Division Algorithm.

Or

- (b) Prove that given any two integers a and b, there is a common divisor d of a and b of the form d = ax + by, where x and y are integers. Moreover, every common divisor of a and b divides this d.
- 17. (a) If $n \ge 1$, prove that $\sum_{d \setminus n} \varphi(d) = n$.

Or

(b) If $n \ge 1$, prove that $\varphi(n) = n \prod_{p/n} \left(1 - \frac{1}{p}\right)$.

Page 5 Code No.: 5833

18. (a) Prove that if f and g are multiplicative, so is their Dirichleet product f * g

Or

- (b) Let f be multiplicative, then prove that f is completely multiplicative if and only if, $f^{-1}(n) = \mu(n)f(n)$ for all $n \ge 1$.
- 19. (a) State and prove Euler's Summation formula.

Or

- (b) If $x \ge 1$, prove that $\sum_{n \le x} \frac{1}{n} = \log x + C + 0 \left(\frac{1}{x}\right)$.
- 20. (a) For all $x \ge 2$, prove that $\log[x]! = x \log x x + 0(\log x)$.

Or

(b) Prove that for $n \geq 2$,

$$\frac{n}{6\log n} < \pi(n) < \frac{6n}{\log n} \ .$$

Page 6 Code No.: 5833