Reg. No.:....

Code No.: 20380 E Sub. Code: CMMA 31

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

Third Semester

Mathematics - Core

SEQUENCES AND SERIES

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions.

Choose the correct answer:

- 1. The following statements are true except
 - (a) $\left(\frac{1}{n}\right)$ is a convergent sequence
 - (b) $\left(\frac{1}{n}\right)$ is a bounded sequence
 - (c) $\left(\frac{1}{n}\right)$ is a monotonic increasing sequence
 - (d) $\left(\frac{1}{n}\right)$ is a strictly mono

- 2. Read the following statements
 - (i) Any convergent sequence is a Cauchy sequence
 - (ii) Any Cauchy sequence is a convergent sequence
 - (iii) Any Cauchy sequence is a bounded sequence
 - (iv) Any bounded sequence is a Cauchy sequence

The correct statement

- (a) only (i) and (iii) are true
- (b) only (ii) and (iv) are true
- (c) (i), (ii), (iii) and (iv) are true
- (d) only (i) is true
- 3. The incorrect statement from the following (K_1, K_2)
 - (a) $1+2+3+4+\cdots$ diverges to ∞
 - (b) $\sum_{1}^{\infty} \left(\frac{1}{2^n} \right)$ converges to 1
 - (c) $\sum_{1}^{\infty} \left(\frac{1}{3^n}\right)$ converges to $\frac{1}{2}$
 - (d) $\sum_{1}^{\infty} \left(\frac{1}{n}\right)$ converges to 2

Page 2 Code No.: 20380 E

- (i) The series $\sum_{p=1}^{\infty} \frac{1}{n^p}$ converges if p < 1
 - (ii) The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1

The correct statement is -

- only (i) is false
- only (ii) is false
- both (i) and (ii) are false
- both (i) and (ii) are true
- 5. $1 + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots = -$

- (c) $\frac{1}{2}$ (d) $\frac{2}{3}$
- 6. $lt_{n\to\infty} \frac{1}{n} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) = -1$
 - (a) 0

(c) 1

- None
- Page 3 Code No.: 20380 E

- Let Σa_n be a series of positive terms. The correct statement from the following is
 - Σa_n converges if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} > 1$
 - Σa_n converges if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} < 1$
 - Σa_n converges if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$
 - (d) $\sum a_n$ converges if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 0$
- Applying the ratio test for $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$ the series is
 - convergent
 - divergent
 - neither convergent nor divergent
 - both convergent and divergent
- $\lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) = \frac{1}{n!}$

Page 4 Code No.: 20380 E

[P.T.O.]

10.
$$\lim_{n\to\infty} \frac{(1^3+2^3+\cdots+n^3)}{n^4} = \frac{1}{n^4}$$

(a) $\frac{1}{2}$

(b)

(c) $\frac{1}{4}$

(d) (

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Show that a sequence cannot converge to two different limits.

Or

- (b) Prove that if Σa_n converges and Σb_n diverges then $\Sigma (a_n + b_n)$ diverges.
- 12. (a) If $(a_n) \to a$ and $(b_n) \to b$ prove that $(a_n b_n) \to ab$.

Or

- (b) Test the convergence of the Geometric series $1+r+r^2+\cdots+r^n+\cdots$ when
 - (i) $0 \le r \le 1$
 - (ii) $\dot{r} > 1$
 - (iii) r=1.

Page 5 Code No.: 20380 E

13. (a) Discuss the convergence of the series $\sum \frac{1}{\sqrt{n^3+1}}.$

Or

- (b) If $y = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \cdots$ prove that $x = \frac{y}{1!} + \frac{y^2}{2!} + \frac{y^3}{3!} + \cdots$.
- 14. (a) Test the convergence of $\sum \frac{n^n}{n!}$.

Or

- (b) Test the convergence of $\sum \sqrt{\frac{n}{n+1}} . x^n$.
- 15. (a) Test the convergence of $\Sigma \frac{(-1)^n \sin n\alpha}{n^3}$.

Or

(b) State and prove Dirichlet's test.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Show that the sequence $\left(1+\frac{1}{n}\right)^n$ converges.

Or

Page 6 Code No.: 20380 E

- If $(a_n) \to a$ and $a_n \neq 0$ for all n and $a \neq 0$ then prove that $\left(\frac{1}{a_n}\right) \to \frac{1}{a}$. Also prove $\left(\frac{a_n}{b_n}\right) \rightarrow \frac{a}{b}$ if $(a_n) \rightarrow a, (b_n) \rightarrow b$ where $b_n \neq 0$ for all n and $b \neq 0$.
- Applying Cauchy's general principle convergence prove $1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^n \frac{1}{n} + \dots$ is convergent.

Or

- Show that the harmonic series $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.
- State and prove comparison test. 18.

Or

- State and prove Kummer's test.
- Test the convergence of the series $1 + \frac{\alpha\beta}{r}x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{r(r+1)2!}x^2 + \cdots$

Or

Code No.: 20380 E

- Test the convergence and divergence of the series $1 + \frac{2x}{2!} + \frac{3^2x^2}{3!} + \frac{4^3x^3}{4!} + \frac{5^4x^4}{5!} + \cdots$
- State and prove Cauchy's condensation test.

Or

Test the convergence of the series $\sum (-1)^n \left(\sqrt{n^2+1} - n \right).$

Page 8 Code No.: 20380 E