(6 Pages)							
Reg. No.:							
Cod	e No.: 30584 E Sub. Code: AMCS 42						
B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2022							
Fourth Semester							
Computer Science — Core							
COMPUTER ARCHITECTURE							
(For those who joined in July 2020 onwards)							
Time: Three hours Maximum: 75 marks							
PART A — $(10 \times 1 = 10 \text{ marks})$							
Answer ALL questions.							
Choose the correct answer:							
1.	A sequence of instructions for the computer is called ———						
	(a) hardware (b) program						
	(c) data (d) instruction						
2.	The solution to any problem stated by a finite number of procedural steps is						
	(a) procedure (b) algorithm						
	(c) subprogram (d) specification						

In	immediate addressing the operand is placed				
(a)	in the CPU register				
(b)	after OP code in the instruction				
(c)	in memory				
(d)	in stack				
As	stack pointer is ———				
(a)	a 16-bit register in the microprocessor that indicate the beginning of the stack memory				
(b)	a register that decodes and executes 16-bit arithmetic expression				
(c)	the first memory location where a subroutine address is stored				
(d	a register in which flag bits are stored				
The register that holds an address for the memory address is called ———					
(a) memory address register				
(b) shift register				
(c) addition				
(d) division				

Page 2 Code No. : 30584 E

6.	of 0'	In booth multiplication algorithm, operates strings of 0's in the multiplier requires no ——— but just shifting.						
	(a)	subtractor	(b)	multiplication				
	(c)	addition	(d)	division				
7.	An interface that provides I/O transfer of data directly to and form the memory unit and peripheral is termed as							
	(a)	DDA	(b)	Serial interface				
	(c)	BR	(d)	DMA				
8.	The technique which allows the DMA controller transfer one data word at a time, after which must return control of the buses to the CPU known as							
	(a)	bus request	(b)	cycle stealing				
	(c)	bus grant	(d)	burst transfer				
9.	Cache memory works on the principle of							
-	(a) locality of data							
	(b)	locality of memory	,					
	(c)	c) locality of reference						
	(d) locality of reference and memory							
	Page 3 Code No.: 30584							

- 10. Memory unit accessed by content is called
 - (a) Real only memory
 - (b) Programmable memory
 - (c) Virtual memory
 - (d) Associative memory

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Describe the stored program organization in instruction code.

Or

- (b) Elaborate the basic computer instruction formats.
- 12. (a) Write down the general register organization.

Or

(b) Distinguish between the one-address instructions and zero-address instructions.

Page 4 Code No.: 30584 E

[P.T.O]

13. (a) Explain the booth algorithm for multiplication of signed-2's complemnt numbers.

Or

- (b) Summarize the addition and subtraction with signed-magnitude data.
- 14. (a) Point out the functions of asynchronous communication interface.

Or

- (b) Differentiate between the isolated and memory-mapped I/O.
- 15. (a) Explain the memory connection to CPU.

Or

(b) State the advantages of cache memory.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Draw and explain the basic computer registers connected to a common bus.

Or

(b) Illustrate the execution of register reference instructions.

Page 5 Code No.: 30584 E

17. (a) What is a stack? What are the operations performed on stack? Describe.

Or

- (b) Outline the various types of addressing modes.
- 18. (a) Elaborate the flowchart for hardware divide algorithm.

Or

- (b) Determine the registers for floating point arithmetic operations.
- 19. (a) Discuss the block diagram of DMA also describe how DMA is used to transfer data from peripherals.

Or

- (b) Explain the asynchronous data transfer with diagram.
- 20. (a) Draw and explain the block diagram of associative memory.

Or

(b) Compare the address space and memory space in virtual memory.

Page 6 Code No.: 30584 E