(8 pages)

Reg. No.:

Code No.: 8158

Sub. Code: VPHC 11

M.Sc. (CBCS) DEGREE EXAMINATION. **NOVEMBER 2024**

First Semester

Physics - Core

MATHEMATICAL PHYSICS

(For those who joined in July 2024 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- The concept of linear vector space is important for the study of
 - Electronics
 - Quantum mechanics
 - Space science
 - None of the above

- The operation of addition in liner vector space must satisfy
 - Commutative law
 - Associative law
 - Both commutative and Associative laws
 - None of the above
- The Elements of vector space are
 - Vectors
 - Scalars
 - Both vectors and scalars
 - None of the above
- If a group is cyclic, it must also be
 - Isomorphic
- Homomorphic
- Abelian
- None of the above
- 5. If z = x + iy and be a complex number, its modulus is denoted by |z| and given by
- (c) $z = +\sqrt{x^2 y^2}$ (d) $z = -\sqrt{x^2 y^2}$

Code No.: 8158 Page 2

- 6. Modulus of the product of two complex numbers is the product of their
 - (a) Arguements
- (b) Moduli
- (c) Real numbers
- (d) None of the above
- 7. A matrix of the order of $q \times 1$ is called
 - (a) Row matrix
- (b) Column matrix
- (c) Identity matrix
- (d) None of the above
- 8. Scalar quantity which is associated with a linear transformation belonging to a vector space is
 - (a) Eigen matrix
- (b) Eigen matrix
- (c) Eigen Value
- (d) All the above
- 9. A matrix that has all of its elements is zero is said to be a
 - (a) Unit matrix
- (b) Identify matrix
- (c) Row matrix
- (d) Null matrix
- 10. Which of the following represents Laplace's transform?

(a)
$$g(\alpha) = \int_{0}^{\infty} f(t) e^{-i\alpha t} dt$$

(b)
$$f(\alpha) = \int_{0}^{\infty} f(t) e^{-\alpha t} dt$$

(c)
$$g(\alpha) = \int_{0}^{\infty} f(t)t J_n(\alpha t) dt$$

(d)
$$g(\alpha) = \int_{0}^{\infty} f(t) t^{\infty - 1} dt$$

Page 3 Code No.: 8158

- 11. The fourier sine transform of function $f(x) = e^{-ax}$ is
 - (a) $\frac{s}{a^2 + s^2}$
- (b) $\frac{a}{a^2 + s^2}$
- (c) $\frac{\sin ax}{\sqrt{a^2 + s^2}}$
- (d) $\frac{a\sin ax}{\sqrt{a^2 + s^2}}$
- 12. Laplace transform of t^n is
 - (a) $\frac{n!}{s^n}$

(b) $\frac{n!}{s^{n-1}}$

(c) $\frac{n!}{s^{n+1}}$

- (d) $\frac{(n+1)}{g^{n+1}}$
- 13. The Legendre polynomial $P_n(x)$ has
 - (a) n real zero between 0 and 1
 - (b) n zero of which only one is between -1 and +1
 - (c) (2n-1) real zeros between -1 and +1
 - (d) No real zero between 0 and z
- 14. In $P_n(x)$ is Legendre polynomial, then the value of

Page 4

$$\int_{-1}^{+1} P_n(x) P_m(x) dx (m \neq n)$$
is equal to

(a) 0

- (b) 1
- c) $\frac{2}{(2m+1)(2m-1)}$ (d) $\frac{m! \, n!}{2(m+n)!}$
 - Code No. : 8158

[P.T.O.]

- 15. The orthogonality condition for legendre polynomial $\int_{-1}^{1} P_m(x) P_n(x) dx = 0$ is true for
 - (a) m = n
- (b) $m \neq n$
- (c) m = n = 0
- (d) None of these

PART B —
$$(5 \times 4 = 20 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) What is linear vector space? Describe orthogonality.

Or

- (b) What is dual space? Describe orthogonal basis.
- 17. (a) Describe differentiability.

Or

- (b) How the character tables are construed.
- 18. (a) Diagonalise the matrix $\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Or

(b) Find the rank of the matrix $\begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & -2 \\ 2 & 4 & -3 \end{bmatrix}$.

Page 5 Code No.: 8158

19. (a) State and prove similarity theorem.

Or

- (b) State and prove change of scale property of Laplace transforms.
- 20. (a) Solve the differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0 \, .$

Or

(b) Solve $(D^2 - 4D + 4)y = x^3e^{2x}$.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

21. (a) Explain Gram-Schmidt orthogonalization procedure.

Or

(b) Explain orthogonal transformations and rotation of \mathbb{R}^2 vector space with standard basis.

Page 6 Code No.: 8158

Write down the properties of moduli and 22. (a) arguements.

Or

- Write down the algebric operations of complex number.
- 23. State and prove Cayley Hamilton theorem.

Or

(b) Find the characteristic equations of a matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

- 24. (a) Find the Laplace transform of
 - sin h at
 - cosh at

Or

Write down the Fourier sine and cosine transform of first derivatives.

> Code No.: 8158 Page 7

Solve the differential equation 25. (a)

$$\frac{d^2y}{dx^2} = +4\frac{dy}{dx} + 3y = 65\cos 2x \ .$$

Or

Using Rodrigue's formula, prove that

(i)
$$\int_{-1}^{+1} P_o(x) \, dx = 2$$

(ii) $\int_{-1}^{+1} P_n(x) dx = 0 \quad (n \neq 0).$

Page 8

Code No.: 8158