(6 pages) . Reg. No. :	2. The 2's complement of 0110111 is
Code No.: 1712 Sub. Code: R 4 CS 11/ B 4 CS 11	(a) 1001000 (b) 1001001 (c) 10001001 (d) 1000110
B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2010.	3. ANDing maxterms is denoted by —
First Semester	(a) π (b) Σ
Computer Science — Allied	(c) S (d) None 4. ECC stands for ———
Paper I — DIGITAL DESIGN	
(For those who joined in July 2008 and afterwards)	(a) Emitter coupled logic (b) Emitted-coupled logic
Time: Three hours Maximum: 75 marks	(c) Emitted-couple logic
SECTION A — $(10 \times 1 = 10 \text{ marks})$	(d) None
Answer ALL questions.	5. ————— is a universal gate
Choose the correct answer. 1. DVD stands for ———————————————————————————————————	(a) NAND (b) OR
(a) Digital Video Disk	(c) AND (d) NOT
(b) Digital Versatile Disk	6. The circuit that checks the parity at the receiver is called a ———————————————————————————————————
(c) Data Versatile Disk	(a) parity checker (b) parity generator
(d) None	(a) parity checker (b) parity generator (c) parity corrector (d) none Page 2 Code No.: 1712

7.	The combinational circuit that converts <i>n</i> -input line to a maximum of 2 ⁿ unique output lines is	
	(a) decoder (b) encoder	
	(c) multiplexer (d) none	
8.	Storage elements that operate with signal level and controlled by a clock transition are called	
	(a) flip flops (b) latches	
	(c) clock control (d) none	
9.	A group of flip flop is called ————	
	(a) counter (b) register	
	(c) latch (d) none	
10.	The BCD counter counting from 0 to 9 is called	
	(a) deci counter (b) decade counter	
	(c) round counter (d) none	
	Page 3 Code No. : 1712	

SECTION B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL the questions choosing either (a) or (b).

11. (a) Write about octal and hexadecimal numbers.

Or

- (b) Prove:
 - (i) x + x = x
 - (ii) $x \cdot x = x$
 - (iii) x + 1 = 1
- 12. (a) Explain sum of minterms with suitable example.

Or

- (b) Draw the logic diagrams for the Boolean expressions.
 - (i) Y = A + B + B' + (A + C')
 - (ii) $Y = (A \oplus C)' + B$.
- 13. (a) Explain multilevel NAND circuit.

Or

(b) Explain binary subtractor.

Page 4 Code No.: 1712 [P.T.O.]

14. (a) Write about sequential circuits.

(c) Long connent Or (a) none

- (b) Discuss about (i) state diagram (ii) state
- 15. (a) Explain registers with parallel load.

The BCD counter colouing from 0 to 9 is called

(b) Write notes on ring counter and up/down binary counter.

SECTION C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL the questions choosing either (a) or (b).

16. (a) Explain the steps involved in converting binary numbers to other bases.

Or

- (b) Discuss about Boolean functions in detail.
- 17. (a) Explain different forms of representing a boolean function.

Or

- (b) Convert each of the following to other canonical form:
 - (i) $F(x, y, z) = \Sigma(2, 5, 6)$
 - (ii) $F(A, B, C, D) = \pi (0, 1, 2, 4, 7, 9, 12)$

Page 5 Code No.: 1712

18. (a) Explain the analysis procedure of combinational circuit.

Or

- (b) Explain binary multiplier with a neat diagram.
- 19. (a) Explain in detail about decoders.

Or Or

- (b) Explain in detail Analysis with JK flip flop.
- 20. (a) What is shift register? Explain about universal shift register.

Or

(b) Explain in detail about ROM.