(7 pages) **Reg. No. :**

Code No.: 5846 Sub. Code : PMAM 33

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

Third Semester

Mathematics

ADVANCED ALGEBRA — I

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions.

Choose the correct answer :

1. If dim V = 5 then dim Hom (V, F) is

(a)	1	(b)	25
(c)	5	(d)	6

2. If
$$w = \frac{v}{\|v\|}$$
 then (w, w) is

(c)
$$||v||$$
 (d) $\frac{1}{||v||}$

- 3. Suppose A is an algebra of dimension m over f. Which one of the following holds?
 - (a) any *m* elements in A are linearly dependent
 - (b) any m elements in A are linearly independent
 - (c) any (m+1) elements in A are linearly dependent
 - (d) any (m+1) elements in A are linearly independent

4. If
$$m(S) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and $m(T) = \begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ then
 $m(ST)$ is

(a)
$$\begin{pmatrix} 3 & 0 \\ 9 & 12 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 0 \\ 3 & 8 \end{pmatrix}$
(c) $\begin{pmatrix} 3 & 6 \\ 2 & 3 \end{pmatrix}$ (d) $\begin{pmatrix} 3 & 6 \\ 5 & 12 \end{pmatrix}$

- 5. $S, T \in A(V)$ are said to be similar if there exists an invertible element $C \in A(V)$ such that
 - (a) $T = SCS^{-1}$ (b) $T = S^{-1}CS$
 - (c) $T = CSC^{-1}$ (d) T = CSC

Page 2 Code No. : 5846

6. M_3 will denote the 3×3 matrix

(a)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
(c) $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

- 7. If A' is the transpose of A, which one of the following is not true.
 - (a) (A')' = A (b) (A+B)' = A' + B'

(c)
$$(AB)' = A'B'$$
 (d) $(A^{-1})' = (A')^{-1}$

8. The secular equation of $\begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$ is

- (a) $x^2 x 6$ (b) $x^2 + x 6$ (c) $x^2 - x + 6$ (d) $x^2 + x + 6$
- 9. If T is unitary and it λ is a characteristic root of T then

(a)	λ is real	(b)	λ	= 1
· /		~ /		

(c) $\lambda = \pm 1$ (d) $\lambda = 0$

Page 3 Code No. : 5846

- 10. If 1+i is a characteristic root of the normal transformation N and if VN = (1+i)v then $vN + vN^x$
 - (a) 2v (b) 2iv

(c) (2+2i)v (d) v

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Show that $\operatorname{Hom}(V, W)$ is a vector space under suitable operations.

 \mathbf{Or}

- (b) It W is a subspace of V, define W^{\perp} and show that W^{\perp} is a subspace of V and $W \cap W^{\perp} = 10$.
- 12. (a) If V is finite dimensional over F, prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0.

Or

(b) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, prove that for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).

Page 4 Code No. : 5846

[P.T.O]

13. (a) If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, Prove that T satisfies a polynomial of degree n over F.

Or

- (b) If $T \in A(V)$ us nilpotent, prove that $\alpha_0 + \alpha_1 T + ... + \alpha_m T^m$ where the $\alpha_i \in F$, is invertible if $\alpha_0 \neq 0$.
- 14. (a) For all $A, B \in F_n$, prove that (AB)' = B'A'.

Or

- (b) Prove that every $A \in F_n$ satisfies its secular equation.
- 15. (a) Define a Hermitian linear transformation. If $T \in A(V)$ is Hermitian, prove that all its characteristic roots are real.

Or

(b) Define a unitary linear transformation. If T is unitary and if λ is a characteristic root of T, prove that $|\lambda| = 1$

Page 5 Code No. : 5846

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) For finite dimensional vectors spaces V and W, find the dimension of Hom (V, W)

Or

(b) Let F be the real field and let V be the set of polynomials, in a variable x, over F degree 2 or less. If
$$p(x), q(x) \in V$$
, define $(p(x), q(x)) = \int_{-1}^{1} p(x) q(x) dx$. Find an orthonormal basis from the basis $v_1 = 1, v_2 = x, v_3 = x^2$ of V.

17. (a) Define (i) right invertible (ii) left invertible linear transformations. Give an example of a right invertible, element in A(V) but is not invertible with justification.

Or

(b) If V is n-dimensional over F and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis $v_1, v_2, ..., v_n$ and the matrix $m_2(T)$ in the basis $w_1, w_2..., w_n$ of V over F, prove that there is an element $C \in F_n$ such that $m_2(T) = cm_1(T)c^{-1}$.

Page 6 **Code No. : 5846**

18. (a) With usual notations, prove that for each $i = 1, 2, k, V_i \neq (0)$ and $V = V_1 \oplus V_2 \oplus ... \oplus V_k$. Also find the minimal polynomial of T_i .

Or

- (b) Prove that two nilpotent linear transformations are similar if and only if they have the same invariants.
- 19. (a) For $A, B \in F_n$ and $\lambda \in F$, prove that
 - (i) $t_r(\lambda A) = \lambda t_r A$
 - (ii) $t_r (A+B) = t_r A + t_r B$
 - (iii) $t_r(AB) = t_r(BA)$ and
 - (iv) $t_r (A \subset A^{-1}) = t_r C$ if A is invertible.

Or

- (b) If $A \in F_n$, define det A with an example and show that det A = 0 if two rows of A are equal.
- 20. (a) If $T \in A(V)$ is such that (vT, v) = 0 for all $v \in V$ prove that T = 0.

\mathbf{Or}

(b) Prove that the linear transformation T on V is unitary it and only if it takes an orthonormal basis of V into an orthonormal basis of V.

Page 7 Code No. : 5846