(7 pages)

Reg. No. :

Code No. : 30574 E Sub. Code : SMMA 51

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

Fifth Semester

Mathematics - Core

ABSTRACT ALGEBRA – II

(For those who joined in July 2017 onwards)

Time : Three hours Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

- 1. Which one of the following is not true in a vector space V
 - (a) $\alpha . 0 = 0 \forall \alpha \varepsilon F$
 - (b) $0.v = 0 \forall v \varepsilon v$
 - (c) $\alpha . (uv) = (\alpha u)v$
 - (d) $\alpha (u + v) = \alpha u + \alpha v$

- 2. In a vector space, the set of all vectors under addition is a
 - (a) field (b) ring
 - (c) group (d) abelian group
- 3. If dim A = 4, dim B = 3 and dim(A + B) = 6 then dim $(A \cap B) = ?$
 - (a) 1 (b) 8
 - (c) 4 (d) 2
- 4. If A and B are any two subspaces of a vector space V then
 - (a) $\dim A + \dim B \leq \dim V$
 - (b) $\dim(A+B) \leq \dim V$
 - (c) $\dim A + \dim B \ge \dim V$
 - (d) $\dim A + \dim B = \dim V$
- 5. If $T: V \to W$ is a linear transformation then
 - (a) $\dim V \leq \dim T(V)$
 - (b) $\dim V = \dim T(V)$
 - (c) $\dim V \ge \dim T(V)$
 - (d) None of these

Page 2 Code No. : 30574 E

6. If
$$\langle f, g \rangle = \int_{0}^{1} f(t) g(t) dt$$
 and $f(t) = t - 2$ then
 $||f|| = ?$
(a) $\sqrt{\frac{7}{3}}$ (b) $\frac{3}{7}$
(c) $\frac{7}{3}$ (d) $\frac{4}{\sqrt{3}}$

7. The rank of the matrix $\begin{pmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ is

- (a) 1
 (b) 2
 (c) 3
 (d) 4
- 8. Choose the matrix for which the inverse exists

(a)
$$\begin{pmatrix} 2 & 1.5 \\ 4 & 3 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 3 \\ 2 & 2 \end{pmatrix}$
(c) $\begin{pmatrix} \frac{1}{10} & \frac{2}{5} \\ \frac{1}{20} & \frac{1}{5} \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

Page 3 Code No. : 30574 E

9.	The	characteristics	equation	on of	the	matr	ix
	<i>A</i> =	$\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$ is —					
	(a)	$x^2 - 2x + 7 = 0$	(b)	$x^2 + 2x$	c – 5 =	- 0	
	(c)	$x^2 - 2x - 5 = 0$	(d)	$x^2 - 2x$	c + 5 =	• 0	
10.	The	quadratic form	of the	matri	\mathbf{x} $\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\1 \end{pmatrix}$	is
	(a)	$x^2 + y^2$	(b)	2xy			
	(c)	$x^2 + 2xy$	(d)	(x + y)	2		
PART B — $(5 \times 5 = 25 \text{ marks})$							

Answer ALL questions, choosing either (a) or (b).

11. (a) If A and B are subspaces of a vector space V then prove that $A \cap B$ is also a subspace of V. In $A \cup B$ a subspace of V?

Or

(b) If $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(a,b) = (2a - 3b, a + 4b) then verify whether T is a linear transformation or not.

Page 4 Code No. : 30574 E [P.T.O.]

- 12. (a) Prove that $S = \{(2, -3, 1), (0, 1, 2), (1, 1, 2)\}$ is a basis for $V_3(\mathbb{R})$. Or
 - (b) Let V be a finite dimensional vector space over a field F and A be a subspace of V. Prove that there exists a subspace B of V such that $V = A \oplus B$.
- 13. (a) Prove that an orthogonal set of non-zero vectors in an inner product space is linearly independent.
 - Or
 - (b) Find the linear transformation determined by the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ with respect to the

standard basis $\{e_1, e_2, e_3\}$ in $V_3(\mathbb{R})$.

- - $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 2 & -3 & 0 & -1 \\ 1 & 1 & -1 & 0 \end{bmatrix}.$

Page 5 Code No. : 30574 E

- 15. (a) Prove that the characteristic roots of a Hermitian matrix are real.
 - (b) Find the matrix of the bilinear form $f(x, y) = x_1y_2 x_2y_1$ with respect to the standard basis in $V_2(\mathbb{R})$.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

- 16. (a) Prove that \mathbb{R}^n is a vector space over \mathbb{R} . Or
 - (b) If A and B are two subspaces of a vector space V over a field F then prove that $\frac{A+B}{A} \cong \frac{B}{A \cap B}.$
- 17. (a) (i) Prove that any subset of a linearly independent set in a vector space V is linearly independent.
 - (ii) Let V be a vector space over a field F. Let $S, T \leq V$. Prove that $L(S \cup T) = L(S) + L(T)$. Or
 - (b) Let V be a finite dimensional vector space over a field F. If W is a subspace of V then show that $\dim(V/W) = \dim V - \dim W$.

Page 6 Code No. : 30574 E

- 18. (a) Prove that every finite dimensional inner product space has an ortho-normal basis. Or
 - (b) If V and W are vector spaces of dimensions m, n respectively over F then show that L(V, W) is a vector space of dimension m.n over F.
- 19. (a) State and prove Cayley-Hamilton theorem. Or

(b) Find the inverse of
$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & 0 & 0 \\ 1 & 2 & 1 & -2 \\ 0 & 3 & 2 & 1 \end{bmatrix}$$
 by

elementary transformation.

20. (a) Find the eigen values and eigen vector of the
matrix
$$\begin{bmatrix} 0 & 1 & 1 \\ -4 & 4 & 2 \\ 4 & -3 & -1 \end{bmatrix}$$
.
Or

(b) Reduce the quadratic form

 $2x_1x_2 - x_1x_3 + x_1x_4 - x_2x_3 + x_2x_4 - 2x_3x_4$ to the diagonal form using Lagrange's method.

Page 7 Code No. : 30574 E