(8 pages) Reg. No.:	3. The isometric isomorphism $x \to F_x$ is called the
Code No.: 5385 Sub. Code: ZMAM 43	of N into N^{**} . (a) bijective (b) injective
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024.	(c) natural imbedding (d) transitive
Fourth Semester Mathematics — Core FUNCTIONAL ANALYSIS (For those who joined in July 2021-2022 only) Time: Three hours Maximum: 75 marks $PARTA - (10 \times 1 = 10 \text{ marks})$ Answer ALL questions.	 4. The — of the linear transformation T is the subset B×B' consists of all ordered pairs of the form (x, T(x)). (a) open (b) graph of T (c) open map (d) closed map 5. The set of all vectors orthogonal to a non empty set S is — of S. (a) orthogonal complement
Choose the correct answer: 1. A complete normed linear space is called as space. (a) Metric (b) Hilbert (c) Empty (d) Banach 2. For a linear transformation T with a real number	 (b) perpendicular (c) parallel (d) equal 6. A complete Banach space whose norm arises from
$k \ge 0$ satisfying $ Tx \le K x $ for every x then K is called a ———————————————————————————————————	an inner product is said to be ———————————————————————————————————
	Page 2 Code No. : 5385

(T	f(x) =			
(a)	$T^*f(x)$	(b)	$fT^*(x)$	
(c)	f(Tk)	, (d)	$T^*(f(x))$	

- An operator N on H is said to be it commutes with its adjoint.
 - (a) normal

(a) ||T||2

(c) T

(b) singular

(d) ø

- (c) bijective
- (d) orthogonal
- An operator A on H satisfying the condition $A = A^*$ is called -
 - (a) adjoint
- (b) self adjoint
- (c) inverse
- (d) unitary

Code No.: 5385 Page 3

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Let M be a linear subspace of a normed linear space N and f be a functional defined on M. If x_0 is a vector not in M and if $M_0 = M + [x_0]$ is the linear subspace spanned by M and x_0 then prove that f can be extended to a functional f_0 defined on M_0 such that $||f_0|| = ||f||$.

Or

- (b) Let N and N' be normed linear spaces and T be a linear transformation of N into N'then prove that the following conditions are all equivalent:
 - T is continuous
 - T is continuous at the origin ie $x_n \to 0 \Rightarrow T(x_n) \to 0$
 - (iii) there exists a real number $k \ge 0$ with the property that $||Tx|| \le K ||x||$ for every $x \in N$.
 - (iv) if $S = \{x : ||x|| \le 1\}$ is the closed unit sphere in N then T(S) in a bounded set in N'.

Code No.: 5385 Page 4

[P.T.O.]

12. (a) State and prove closed graph theorem.

Or

- (b) Let B be a Banach space and M, N be closed linear subspaces of B such that $B = M \oplus N$. If z = x + y is the unique representation of a vector in B as a sum of vectors in M and N then prove that the mapping p defined by P(z) = x is a projection on B whose range and null space are M and N.
- 13. (a) If M is a closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$.

Or

- (b) Prove Schwarz inequality.
- 14. (a) Let H be a Hilbert space and let f be an arbitrary functional in H^* . Then prove that there exists a unique vector y in H such that f(x) = (x, y) for every x in H.

Or

(b) If $\{e_i\}$ is an orthonormal set in a Hilbert space H, then prove that $\Sigma |(x, e_i)|^2 \le ||x||^2$ for every vector x in H.

Page 5 Code No. : 5385

15. (a) If T is an operator on H for which (Tx, x) = 0 for all x, then prove that T = 0.

Or

(b) Prove that a closed linear subspace M of H is invariant under an operator T if and only if M^{\perp} is invariant under T^{*} .

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Let M be a closed linear subspace of a normed linear space N. If the norm of a coset x+M in the quotient space N/M is defined by $\|x+M\|=\inf\{\|x+m\|\colon m\in M\}$ then prove that N/M is a normed linear space. Also if N is a Banach space so is N/M.

Or

(b) If N and N' are normed linear spaces then prove that the set $\mathcal{B}(N,N')$ of all continuous linear transformations of N into N' is itself a normed linear space with respect to the pointwise linear operations and norm defined by $\|T\| = \sup\{\|T(x)\| : \|x\| \le 1\}$.

Page 6 Code No.: 5385

17. (a) Prove that if N is a normed linear space, then the closed unit sphere S^* in N^* is a compact Hausdorff space in the weak*topology.

· Or

- (b) State and prove open mapping theorem.
- 18. (a) If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a non zero vector z_0 in H such that $z_0 \perp M$.

Or

- (b) State and prove Uniform Boundedness theorem.
- 19. (a) If $\{e_i\}$ is an orthonormal set in a Hilbert space H and if x is an arbitrary vector in H then prove that $x \Sigma(x, e_i) e_i \perp e_j$ for each j.

Or

(b) The adjoint operator $T \to T^*$ on \mathcal{B} (H) has the following properties — Prove.

(i)
$$(T_1 + T_2)^* = T_1^* + T_2^*$$

(ii)
$$(\alpha T)^* = \overline{\alpha} T^*$$

(iii)
$$(T_1T_2)^* = T_2^*T_1^*$$

(iv)
$$||T^*T|| = ||T||^2$$
.

Page 7 Code No.: 5385

20. (a) If N_1 and N_2 are normal operators on H with either commutes with the adjoint of the other then prove that $N_1 + N_2$ and $N_1 N_2$ are normal.

Or

(b) Prove that if P_1, P_2, P_n are the projections on closed linear subspaces $M_1, M_2,, M_n$ of H then $P = P_1 + P_2, + P_n$ is a projection \Leftrightarrow the $P_i s$ are pairwise orthogonal and P is a projection on $M = M_1 + + M_n$.

Page 8 Code No.: 5385