Reg. No.:

Code No.: 21109

Sub. Code: JAMA 11

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2016.

First Semester

Mathematics - Allied

ALGEBRA AND DIFFERENTIAL EQUATIONS

(For those who joined in July 2016 onwards)

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- f(x)=0 என்ற சமன்பாட்டிற்கு $\sqrt{2}+1$ ஒரு மூலம் எனில் அதன் மற்றுமொரு மூலம்

 - (a) $\sqrt{2}-1$ (a) $-\sqrt{2}+1$
 - (a) $-\sqrt{2}-1$

If $\sqrt{2} + 1$ is a root of an equation f(x) = 0, then its another root is

- (a) $\sqrt{2}-1$
- (b) $-\sqrt{2}+1$
- (c) $-\sqrt{2}-1$

- $x^3+ax-b=0$ என்ற சமன்பாட்டின் மூலங்கள் $lpha,eta,\gamma$ எனில் $\Sigma \alpha^3 =$ _____
 - (a) a
- (ஆ) 3b
- (Q) b

If α, β, γ are the roots of the equation $x^3 + ax - b = 0$, then $\Sigma \alpha^3 =$

- (a) a
- (b) 3b
- (c) -b (d) 0
- $x^3+3x^2+x-4=0$ என்ற சமன்பாட்டின் தீர்வுகள் α, β, γ எனில் $x^3 + 6x^2 + 4x - 32 = 0$ சமன்பாட்டின் தீர்வுகள் —

 - (\mathfrak{A}) α, β, γ (\mathfrak{A}) $\alpha^2, \beta^2, \gamma^2$
 - (a) $2\alpha, 2\beta, 2\gamma$
 - (F) $2\alpha, 4\beta, 8\gamma$

If α, β, γ are the roots of the equation $x^3 + 3x^2 + x - 4 = 0$, then the roots $x^3 + 6x^2 + 4x - 32 = 0$ are

- (a) α, β, γ (b) $\alpha^2, \beta^2, \gamma^2$
- (c) $2\alpha, 2\beta, 2\gamma$ (d) $2\alpha, 4\beta, 8\gamma$

Page 2 Code No.: 21109 நியூட்டன் முறையில் தோராய தீர்வு காண பயன்படும் சூத்திரம்

(2)
$$\alpha_1 = \alpha - \frac{f(\alpha)}{f'(\alpha)}$$
 (2) $\alpha_1 = \alpha + \frac{f(\alpha)}{f'(\alpha)}$

(2)
$$\alpha_1 = \alpha + \frac{f(\alpha)}{f'(\alpha)}$$

(a)
$$\alpha_1 = \alpha - \frac{f'(\alpha)}{f(\alpha)}$$

(a)
$$\alpha_1 = \alpha - \frac{f'(\alpha)}{f(\alpha)}$$
 (FF) $\alpha_1 = \alpha + \frac{f'(\alpha)}{f(\alpha)}$

The formula used in Netwon's method to find an approximate solution is

(a)
$$\alpha_1 = \alpha - \frac{f(\alpha)}{f'(\alpha)}$$
 (b) $\alpha_1 = \alpha + \frac{f(\alpha)}{f'(\alpha)}$

(b)
$$\alpha_1 = \alpha + \frac{f(\alpha)}{f'(\alpha)}$$

(c)
$$\alpha_1 = \alpha - \frac{f'(\alpha)}{f(\alpha)}$$
 (d) $\alpha_1 = \alpha + \frac{f'(\alpha)}{f(\alpha)}$

(d)
$$\alpha_1 = \alpha + \frac{f'(\alpha)}{f(\alpha)}$$

 $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ என்ற அணியின் சிறப்பியல்பு சமன்பாடு

(a)
$$x^2 + 2x - 5 = 0$$
 (a) $x^2 - 2x - 5 = 0$

$$(2x)$$
 $x^2 - 2x - 5 = 0$

(a)
$$x^2 + 2x + 5 = 0$$
 (FF) $x^2 - 2x + 5 = 0$

$$(FF) \quad x^2 - 2x + 5 = 0$$

The characteristics equation of the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ is

- (a) $x^2 + 2x 5 = 0$ (b) $x^2 2x 5 = 0$ (c) $x^2 + 2x + 5 = 0$ (d) $x^2 2x + 5 = 0$

$$A = \begin{pmatrix} 3 & 0 & 0 \ 3 & 4 & 0 \ 3 & 6 & 1 \end{pmatrix}$$
 எனில் A^3 ன் ஐகன் மதிப்புகள்

- (a) 3, 4, 1 (a) 9, 12, 3
- (இ) 27, 64, 1
- (FF) 9,16,1

If $A = \begin{pmatrix} 3 & 0 & 0 \\ 3 & 4 & 0 \\ 3 & 6 & 1 \end{pmatrix}$, then the eigen values of A^3 are

- (a) 3, 4, 1 (b) 9, 12, 3
- (c) 27, 64, 1
- (d) 9,16, 1

z=(x+a)(y+b) லிருந்து a-ஐயும் b-ஐயும் நீக்கினால் கிடைக்கும் பகுதி வகைக்கெழுச் சமன்பாடு

- (의) z = (x + p)(y + q) (왕) z = pq
- (a) z = p + q
- $(FF) \quad p+q=1$

The partial differential equation obtained from z = (x + a)(y + b) by eliminating a and b is

- (a) z = (x+p)(y+q) (b) z = pq
- (c) z = p + q (d) p + q = 1

Pp+Qq=R என்ற சமன்பாட்டின் துணைச் சமன்பாடுகள்

- (a) Pdx = Qdy = Rdz (a) Pdx + Qdy = Rdz
- (a) $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ (FF) $\frac{p}{P} = \frac{q}{Q} = \frac{r}{R}$

Page 4

Code No.: 21109

auxiliary equation of the equation Pp + Qq = R are

- (a) Pdx = Qdy = Rdz (b) Pdx + Qdy = Rdz
- (c) $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ (d) $\frac{p}{P} = \frac{q}{Q} = \frac{r}{R}$

L(xf(x)) =

- (এ) $\frac{-d}{ds}[F(s)]$ (এ) $\frac{d}{ds}[F(s)]$
- (a) $\int_{0}^{x} [F(x)]dx$ (ff) $-\int_{0}^{x} F(x)dx$

L(xf(x)) =

- (a) $\frac{-d}{ds}[F(s)]$ (b) $\frac{d}{ds}[F(s)]$
- (c) $\int [F(x)]dx$ (d) $-\int F(x)dx$

10. $L^{-1}[F'(s)] =$

- (a) $xL^{-1}[F(s)]$ (a) $-xL^{-1}[F(s)]$
- (a) $L^{-1}\left[\frac{F(s)}{s}\right]$ (FF) $L^{-1}[sF(s)]$

 $L^{-1}[F'(s)] =$

- (a) $xL^{-1}[F(s)]$ (b) $-xL^{-1}[F(s)]$
- (c) $L^{-1} \left[\frac{F(s)}{s} \right]$ (d) $L^{-1} [s F(s)]$

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

 $2x^2-11x^2+38x-39=0$ என்ற சமன்பாட்டின் ஒரு மூலம் 2-3i எனில் அதனைத் தீர். If 2-3i is a root of the equation $2x^2-11x^2+38x-39=0$, solve it.

Or

- (ஆ) $x^3+qx+r=0$ என்ற சமன்பாட்டின் ஒரு மூலமானது மற்றொரு மூலத்தை விட இரு மடங்கு எனில் $343r^2+36q^3=0$ என நிரூபி.

 Show that the equation $x^3+qx+r=0$ will have one root twice another if $343r^2+36q^3=0$.
- 12. (அ) $4x^5 2x^3 + 7x 3 = 0$ என்ற சமன்பாட்டின் மூலங்களில் 2— ஐக் கூட்டுக.

 Increase the roots of the equation $4x^5 2x^3 + 7x 3 = 0$ by 2.

Or

1 and 2.

(ஆ) $x^3-3x+1=0$ என்ற சமன்பாட்டின் 1- க்கும் 2-க்கும் இடைப்பட்ட தீர்வை நியூட்டன் முறையில் காண்க.

Find by Newton's method the root of the equation $x^3-3x+1=0$ which lies between

Page 6 Code No.: 21109

13. (அ) $A = \begin{pmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{pmatrix}$ என்ற அணி

A(A-I)(A+2I)=0 என்ற சமன்பாட்டை நிறைவு செய்யும் என நிரூபி.

Show that the matrix $A = \begin{pmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{pmatrix}$ satisfies the equation A(A-I)(A+2I)=0.

Or

 $egin{pmatrix} 3 & -4 & 4 \ 1 & -2 & 4 \ 1 & -1 & 3 \end{pmatrix}$ என்ற அணியின் ஐகன் மதிப்புகளின்

கூட்டுத்தொகை மற்றும் பெருக்குத் தொகை காண்க.

Find the sum and product of the eigen values

of the matrix
$$\begin{pmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{pmatrix}$$
.

Page 7 Code No.: 21109

14. (4) Sir:
$$y-2px-p^4x^2=0$$
.

Solve:
$$y - 2px - p^4x^2 = 0$$
.

Or

(ஆ)
$$z = f\left(\frac{y}{x}\right)$$
 லிருந்து f என்ற சார்பை நீக்கி பகுதி வகைக்கெழு சமன்பாடு காண்க.

Find a partial differential equation by eliminating the arbitrary function f from $z = f\left(\frac{y}{x}\right)$.

15. (a)
$$L(t^2 + \cos 2t + \cot + \sin^2 2t)$$
 smooth

Find
$$L(t^2 + \cos 2t + \cot + \sin^2 2t)$$
.

Or

(ag) serious:
$$L^{-1}\!\!\left(\frac{1}{s(s+1)(s+2)}\right)$$
.

Find:
$$L^{-1}\left(\frac{1}{s(s+1)(s+2)}\right)$$
.

Code No.: 21109 Page 8

SECTION C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (\Rightarrow) $8x^4 - 90x^3 + 315x^2 - 405x + 162 = 0$ என்ற சமன்பாட்டின் தீர்வுகள் பெருக்குத் தொடர் வரிசையில் அமையுமாயின் அதனைத் தீர்.

Solve the equation

 $8x^4 - 90x^3 + 315x^2 - 405x + 162 = 0$ given that the roots are in geometric progression.

(2) In :
$$2x^5 - 15x^4 + 37x^3 - 37x^2 + 15x - 2 = 0$$
.
Solve: $2x^5 - 15x^4 + 37x^3 - 37x^2 + 15x - 2 = 0$.

17. (அ) $x^3 - x^2 + 12x + 24 = 0$ என்ற சமன்பாட்டின் குறை மூலத்தை ஹார்னர் முறையில் இரு தசம திருத்தமாக காண்

> Find negative root of $x^3 - x^2 + 12x + 24 = 0$ by Horner's method correct to two places of decimals.

> > Or

இடைப்பட்ட மூலத்தை நியூட்டன் 2-க்கும் முறையில் இரு தசம திருத்தமாகக் காண்.

> Find by correct to two places of decimals the root of the equation $x^4 - 3x + 1 = 0$ that lies between 1 and 2 using Newton's method.

$$A = \begin{pmatrix} 3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$$
 எனில் கெய்லி–ஹேமில்டன்

தேற்றத்தை பயன்படுத்தி A^{-1} காண்.

If
$$A = \begin{pmatrix} 3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$$
, find A^{-1} using Cayley-

Hamilton theorem.

(ஆ)
$$egin{pmatrix} 2 & -2 & 2 \ 1 & 1 & 1 \ 1 & 3 & -1 \end{pmatrix}$$
 என்ற அணியின் ஐகன் மதிப்புகள்

மற்றும் ஐகன் வெக்டர்கள் காண்.

Find the eigen values and eigen vectors of

the matrix
$$\begin{pmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$$
.

Solve: $y^2 \log y = xyp + p^2$.

(ஆ) தீர்:
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$

Solve: $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$

Page 10 Code No.: 21109

$$f(t) = egin{cases} e^{-t}, & 0 < t < 4 \ 0, & t \geq 4 \end{cases}$$
 என்ற சார்பின் லாப்லாஸ் உருமாற்றம் காண்.

Find the Laplace transform of the function

$$f(t) = \begin{cases} e^{-t}, & 0 < t < 4 \\ 0, & t \ge 4 \end{cases}$$

Or

(ஆ) காண் :
$$L^{-1} \bigg[\log \bigg(\frac{s+a}{s+b} \bigg) \bigg]$$
 .

Find:
$$L^{-1}\left[\log\left(\frac{s+a}{s+b}\right)\right]$$
.