(6 pages)

Reg. No. :

Code No.: 7562

Sub. Code: KPHM 32/ **PPHM 32**

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019.

Third Semester

Physics

ELECTROMAGNETIC THEORY

(For those who joined in July 2016 and afterwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

- Laplace equation $\nabla^2 v$ is equal to
 - (a) zero

- The force between two electric charges is directly proportional to

- One tesla is equal to 3.
 - (a) 1N/A
- (b) 1N/Am
- 1NA/m
- (d) 1Nm/A
- The Lorentz law is given by
 - (a) $E_{mag} = Q(\overline{V} \cdot \overline{B})$ (b) $\overline{P}_{mag} = \frac{\overline{V} \times \overline{B}}{Q}$

 - (c) $\overline{F} = Q \ (\overline{V} \times \overline{B})$ (d) $\overline{F}_{mag} = \frac{\overline{V} \cdot \overline{B}}{Q}$
- The energy per unit time per unit area 5. transported by the fields is called
 - Laplace vector
- (b) Lorentz vector
- Faraday vector
- (d) Poynting vector

- 6. The Ampere's law with Maxwell's correction
 - (a) $\overline{\nabla} \times \overline{B} = \mu_0 \overline{J}$
 - (b) $\nabla \times \overline{B} = \frac{\overline{J}}{\mu_0}$
 - (c) $\nabla \times \overline{B} = \mu_0 \overline{J} + \mu_0 \in_0 \frac{\partial \overline{E}}{\partial t}$
 - (d) $\nabla \cdot \overline{B} = \frac{\overline{J}}{\mu_0}$
- 7. A wave guide is used for the propagation of
 - (a) radio waves
- (b) micro waves

(c) IR

- (d) uv
- 8. The distance taken to reduce the amplitude by a factor of 1/e is called
 - (a) skin depth
- (b) range
- (c) dispersion
- (d) group velocity
- 9. Lienard Wiechert potential are for
 - (a) moving point charge
 - (b) moving monopole
 - (c) moving dipole
 - (d) moving quadrupole

Page 3 Code

Code No.: 7562

- 10. The maximum magnetic dipole moment is given by
 - (a) q_0I

- (b) qod
- (c) $\pi b^2 I_0$
- (d) 2πI₀

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

 (a) Determine energy due to point charge distribution.

Or

- (b) Discuss in detail the work done by a moving point charge.
- 12. (a) Determine the multiple expansion of the vector potential.

Or

- (b) Derive the relationship between magnetic susceptibility and permittivity in linear media.
- 13. (a) Obtain the Fraday's law in integral form.

Or

(b) Explain and obtain the boundary conditions on field vectors.

Page 4

Code No.: 7562

ID T OI

14. (a) Derive the wave equation for E and B.

Or

- (b) Describe the propagation of plane EM wave through the coaxial transmission line.
- (a) Explain the radiation field of an electric dipole.

Or

(b) Describe and arrive the power radiated by a point charge.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 600 words.

 (a) Write the poisson equation and deduce the potential of a localized charge distribution.

Or

- (b) Discuss in detail about the fields in dielectric material.
- (a) Derive expression for Biot-Savarts law and Ampere's law and discuss their importance in electromagnetism.

Or

(b) Discuss the effect of magnetic field on atomic orbits.

Page 5 Code No.: 7562

 (a) Derive an expression for Maxwell's stress tensor.

Or

- (b) Deduce theoretically poynting vector and poynting theorem for the flow of energy in electromagnetic field.
- (a) Explain and obtain all Fresnel equation for an electromagnetic wave incident obliquely.

Or

- (b) Explain the propagation of TE waves in rectangular wave guide and get guide wavelength.
- (a) Explain about electric dipole radiation and arrive the expression for A, E, B and total radiated power.

Or

(b) Explain about radiation reaction and the physical basis of radiation reaction.

Page 6 Code No.: 7562