(6 pages)	Reg. No. :	2.	If A	$\cap B = \emptyset$ then A an	d B a	re said to be ———	
			(a)	Conjunctive claus	e (b)	Disjoint set	
Code No.: 8782	Sub. Code : KCSM 11		(c)	Negation	(d)	Contradiction	
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2016.		3.	3. A is a schematic representation of a set by a set of points.				
			(a)	Reflexive	(b)	Irreflexive	
First Semester			(c)	Negation	(d)	Ven diagram	
Computer Science		4.	A set of ordered pairs defines a ———				
MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE			(a)	binary relation	(b)	universal relation	
			(c)	void relation	(d)	none of the above	
(For those who joined in July 2016 onwards)		5.	A is a rectangle array of numbers				
Time: Three hours Maximum: 75 marks $PART A - (10 \times 1 = 10 \text{ marks})$			(a)	set	(b)	matrix	
			(c)	inference	(d)	notation	
Answer ALL questions.		6.	6. A ——— is a matrix with the same number rows as columns.				
Choose the correct answer:			(a)	identity matrix	(b)	transpose matrix	
1. A	is an assertion that can be		(c)	square matrix	(d)	none of the above	
determined to be true or false.		7.	A graph in which every edge is directed is called a				
(a) Statemen	it (b) Contradiction		(a)	digraph	(b)	connected graph	
(c) Tautology	y (d) Negation		(c) _,	multigraph	(d)	none of the above	
				Pag	e 2	Code No. : 8782	

8.	A simple digraph which does not have any cycles is called ———.								
	(a)	reachable set	(b)	circuit					
	(c)	acyclic	(d)	none of the above					
9.		directed tree, any called a	node	which has out degree					
	(a)	leaf	(b)	circuit					
	(c)	acyclic	(d)	none of the above					
10. A set of disjoint tree is called a ———									
	(a)	leaf	(b)	acyclic					
	(c)	forest	(d)	none of the above					
PART B — $(5 \times 5 = 25 \text{ marks})$									
Answer ALL questions, choosing either (a) or (b).									
Each answer should not exceed 250 words.									
11.	(a) Demonstrate that R is a valid inference from the premises $P \to Q$, $Q \to R$ and P .								
Or									
	(b) Symbolize the expression.								

"All the world loves a lover"

Code No.: 8782

"All men are giants".

Page 3

(i)

(ii)

12. (a) Write down the equations for distributive laws of union and intersection also draw the ven diagram.

Or

- b) Write about classification of functions.
- 13. (a) Define a matrix and explain with example.

Or

- (b) Find the Eigen values of the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$
- 14. (a) Prove that every graph is an intersection graph of some family of subsets.

Or

- (b) Write about Hamiltanian graph.
- 15. (a) Prove that A tree with n vertices has n-1 edges.

Or

(b) Prove that A graph is a tree if and only if it is minimally connected.

Page 4 Code No.: 8782 [P.T.O.]

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Show
$$I_{12}: \neg Q, P \rightarrow Q \Rightarrow \neg P$$
.

Or

- Show that
 - (i) $A \subset B \Leftrightarrow A \cap B = A$
 - (ii) If $S = \{a, b, p, q\}$ and $Q = \{a, p, t\}$ then what are $S \cup Q$ and $S \cap Q$.
- Let $A \neq B$ be any two sets. The symmetric 17. (a) difference of A and B is the set A + B.

Or

- Let $X = \{1, 2, 3, 4\}$ and $R = \{(x, y) | x > y\}$. Draw the graph of R and also give its matrix.
- 18. Explain the concept of Rank of matrix with (a) example.

Or

(b) How will you find inverse of matrix? Explain with example.

> Code No.: 8782 Page 5

19. (a) Prove that in a complete graph with n vertices there are (n-1)/2 edge disjoint Hamiltonian circuit, if n is an odd number ≥3.

Or

- Prove that A given connected graph g is an Euler graph if and only if all vertices of G are of even degree.
- 20. Prove that the distance between vertices of a (a) connected graph is a matrix.

Or

Prove that every tree has either one or two centres.

Page 6

Code No.: 8782