(7 pages)

Reg. No. :

Code No.: 7437

Sub. Code: HCSM 11

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2015.

First Semester

Computer Science

MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

(For those who joined in July 2012 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- The number of rows in a truth table for a formula with n veriables is -
 - (a)

(b) · 2n

- A statement formula which is equivalent to the given formula and expressed as sum of min terms is called -
 - PCNF
- CNF
- PDNF
- DNF

- Let R be a relation defined on a set A, and for every $x \in A$, $(x,x) \notin R$ then R is called
 - Reflexive
- Symmetric
- Irreflexive
- (d) Anti symmetric
- If f(x) = x + 2 and g(x) = x 2 the $g \circ f$ is
 - - $\{(x,x)/x \in R\}$ (b) $\{(x,2x)/x \in R\}$
- $\{(x,2-x)/x \in R\}$ (d) $\{(x,2+x)/x \in R\}$
- Every finite group of order n is isomorphic to permutation group of degree
 - n+1

- The set of all invertible elements of a monoid from ——— under the same operation as that of the monoid
 - subgroup
- group
- abelian group
- (d) none
- If a closed walk in a graph contains all the edges of the graph then the walk is called -
 - Open walk
- Euler line
- Euler circuit
- Hamiltonian circuit

- - (a) n+1
- (b) $\frac{(n+1)(n+2)}{2}$
- (c) $\frac{(n-1)(n-2)}{2}$
- (d) (n+1)(n+2)
- A tree in which there is exactly one vertex of degree two and all other vertices is of degree one or three is called — tree
 - (a) Binary
 - (b) Rooted
 - (c) Spanning tree
 - (d) Minimal spanning tree
- 10. A spanning tree T of a connected graph G is also called as
 - (a) Maximal tree subgraph
 - (b) Maximal tree of G
 - (c) (a) and (b)
 - (d) None

Page 3 Code No.: 7437

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Show that $(P \wedge Q) \rightarrow (P \vee Q)$ is a tautology.

Or

- (b) Define functionally complete set of connectives. Explain with suitable example.
- 12. (a) Let $A = \{5,6,7,8\}$ and $R = \{(x,y)/x > y\}$. Draw the graph of R and also give its matrix.

Or

- (b) Let R be a relation on a set A. Then define $R = \{(a, b) \in A \times A/(b, a) \in R\}$. Prove that if (A, R) is poset then (A, R^{-1}) is also a poset.
- 13. (a) Show that if (G,*) is a cyclic group then every subgroup of (G,*) must be cyclic.

Or

(b) Find all subgroups of $(Z_6, +_6)$, where $(Z_6, +_6)$ being the group of residue classes modulo 6 under addition modulo 6.

Page 4 Code No.: 7437

[P.T.O.]

14. (a) Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-2)}{2}$.

Or

- (b) Show that in a simple digraph, every node of the digraph lies in exacting one strong component.
- 15. (a) Define the following terms in trees:
 - (i) Pendant vertex
 - (ii) Centre of a tree
 - (iii) Distance between two vertices
 - (iv) Root of a tree.

Or

(b) Prove that every connected graph has atleast one spanning tree.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Using indirect method of proof, derive $P \to \square S$ from the premises $P \to (Q \lor R)$, $Q \to \square P$, $S \to \square R$ and P.

Or

(b) Find the PCNF and PDNF of the following $S \Leftrightarrow (P \to (Q \land R)) \land (P \to (Q \land R))$.

Page 5 Code No.: 7437

17. (a) Let R be a relation on $A = \{1,2,3\}$ such that (a,b) if and only if a+b is even. Find the relational matrix of R, R^{-1}, \overline{R} and R^2 .

Or

- (b) Let $x = \{1, 2, 3, ..., 7\}$ and $R = \{(x, y)/x y \text{ is divisible by 3}\}$. show that R is an equivalence relation. Draw the graph of R.
- 18. (a) State and prove Lagrange's theorem.

Or

- (b) Let (G, *) be a finite cycle group generated by an element $G \in G$ of G is if order n, prove that $G^n = e$ and $G = \{a, a^2, a^3, ..., a^n = e\}$ where n is the least positive integer for which $a^n = e$.
- 19. (a) Prove that a simple graph with n vertices and K components can have atmost $\frac{(n-k)(n-k+1)}{2}$ edges.

Or

(b) Show that K_n has a Hamiltonian circuit for $n \ge 3$. Obtain all the edge disjoint Hamiltonian circuits of K_7 .

Page 6 Code No.: 7437

Prove that a graph is a tree, if and only if it 20. (a) is minimally connected.

Or

(b) If B is a circuit matrix of a connected graph G with e edges and n vertices then prove that rank of B = e - n + 1.