MARKS : 75 marks

Code No:SS5837

Sub Code: PMAM22

M.Sc. (CBCS) DEGREE SPECIAL SUPPLEMENTARY EXAMINATION,

APRIL 2020

SECOND SEMESTER

MATHEMATICS

ANALYSIS II

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

Part A - (10X1=10 marks)

Answer ALL the questions, Choose the correct answer

- 1. If $f \in R(\alpha)$, m < f < M, ϕ is continuous and $h(x) = \phi(f(x))$, then
 - a) h(x) = 0
 - b) 🖰 h is Riemann integrable
 - c) h is not Riemann integrable
 - d) h need not be Riemann integrable
- 2. If f is continuous on [a,b] then
 - a) $f \in R(\alpha)$
 - b) f ∉ R(×)
 - c) Only real valued continuous functions on are integrable.
 - d) None of the above is true
- 3. A continuous mapping v of an interval [a, b] into R^K is called ------ R^K.
 - a) an arc

b) a closed curve

c) a curve

- d) a straight line
- 4.If $\gamma(a) = \gamma(b)$ then γ is said to be a ----- curve
 - a) closed

b) open

c) mapping

d) arc

5. With usual notations in the exponential function, for all $z \in C$.	
E(z)E(-z) =	יין יין אין אין אין אין אין אין אין אין
a)0	b) E(z)
c) 1	d) None
6.If f and α have a common point of discontinuity then	
a)f(x) = 0	then
b) f is riemann integrable	
c) f is not riemann integrable	
d) f need not be riemann integrable	
7. $E(\pi i/2) =$	
a)1	b) i
c) — i	d) – 1
8. The exponential function E is periodic with period	
a) πi	b) -π i
c) 2 π	d) 2 π i
9. With usual notations, $\Gamma(1/2) =$	
a)1	b) 0
c) ν π	d) 1/√π
10. Log Γ is on (0, ∞)	
a) convex	b) 0
c) not defined	d) not differentiable
PART R = (5 y 5 o o o	
Answer ALL questions, choosing either (a) and (b)	
Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words. 11.(a) $\mathcal{C}(X)$ is a complete metric space	
A	

- (b) State and prove the fundamental theorem of calculus.
- 12.(a) Show by an example that a convergent series of continuous functions may have a discontinuous sum.

Or

- (b) Exhibit an example to show that an everywhere discontinuous limit functions is not Reimann integrable.
- 13. (a) If K is compact, if $f_n \in \mathcal{C}(K)$ for n=1,2,3,... and if $\{f_n\}$ is point wise bounded and equicontinuous on K, then prove that $\{f_n\}$ contains a uniformly convergent subsequence .

Or

- (b) Prove that $\{f_n\}$ is a point wise bounded sequence of complex functions on a countable set E, then $\{f_n\}$ has a subsequence $\{f_{n\,k}\}$ such that $\{f_{n\,k}\}$ converges for x in E.
- 14.(a) Show that $e^{x+y} = e^x$. e^y and $\lim_{x\to\infty} x^n \cdot e^{-x} = 0$.

Or

- (b) Suppose Σ c_n converges. Put $f(x) = \Sigma$ $c_n x^n$, -1 < x < 1. Prove that $\lim_{x \to 1} f(x) = \Sigma$ c_n .
- 15.(a) State and prove the localization theorem .

Or

(b) State and prove Strirlings's formula PART $C - (5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 600 words. 16. (a) Prove that $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if for every $\epsilon > 0$, there exists a partition P such that U(p, f, α) – L(p, f, α) < ϵ

Or

- (b) Prove that f is monotonic on [a, b] and if α is continuous on [a, b] then f ϵ $\Re(\alpha)$
- 17. (a) Prove that $\{f_n\}$ is a sequence of continuous functions on E and if $f_n --> f$ uniformly on E then f is continuous on E.

- (b) Given $\{f_n\}$ is a sequence of functions defined on E and suppose $|f_n(x)| \le M_n(x \epsilon E, n=1, 2, 3,)$. Prove Σf_n converges uniformly on E if ΣM_n converges.
- 18. (a) Prove that there exists a real continuous function on the real line which is no where differentiable.

Or

- (b)) If K is compact metric space, $f_n \in \mathcal{C}(K)$ for n = 1, 2, 3,... and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous.
- 19. (a) State and prove the Stone Weierstrass theorem.

Or

- (b) Discuss Point wise convergence of Fourier series.
- 20. (a) Show that every non-constant polynomials with complex coefficients has a complex root.

Or

(b) Show that if f(x) is a periodic function with period 2π defined in $[-\pi, \ \pi]$, then f(x) can be expanded in a Fourier Series.