PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

- 16. (a) Explain the different types of fuzzy sets.

 Or
 - (b) Explain the basic concepts of fuzzy sets.
- 17. (a) State and prove second decomposition theorem.

Or

- (b) Explain the extension principle in detail.
- 18. (a) State and prove second characterization theorem of fuzzy complements.

 Or
 - (b) Explain the combinations of operations.
- 19. (a) Explain the fuzzy equation $A \cdot X = B$. Or
 - (b) Explain the arithmetic operations on fuzzy numbers.
- 20. (a) Explain the multistage decision making. Or
 - (b) Explain the fuzzy linear programming.

Page 4 Code No.: 10448 E

Reg. No.:....

Code No.: 10448 E Sub. Code: CEMA 62

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024.

Sixth Semester

Mathematics

Major Elective - FUZZY MATHEMATICS

(For those who joined in July 2021-2022)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. $A \cup (A \cap B) = ----$
 - (a) φ

- (b) A
- (c) X
- (d) B
- 2. The core of a fuzzy set is
 - (a) O+ A
- b) ⁰A
- (c) ^{1+}A
- (d) ¹ A
- 3. Which of the following is a wrong statement?
 - (a) $^{\alpha+}A\subseteq {}^{\alpha}A$
- (b) ${}^{\alpha}A \subseteq {}^{\alpha+}A$
- (c) ${}^{1}A \subseteq {}^{0}A$
- (d) None of these

4.		two	ruzzy sets, $\alpha, \rho \in [0,1]$
	then $^{a}(A \cup B) =$		
	(a) ${}^{\alpha}A \cup {}^{\alpha}B$	(b)	$^{a}A\cap ^{a}B$
	(c) $^{\alpha}(A \cap B)$	(d)	None of these
5.	If C is any fuzzy $C(1)$ is ———————————————————————————————————	comple	ment, then the value o
	(a) 0	(b)	1
	(c) -1	(d)	c (0)
6.	i(a, a) is always —		
	(a) $= 0$	(b)	=a.
	(c) < a	(d)	> a
7.	The value of [2, 5]+ [1, 3] is		
		7. 11070 4	[3, 8]
	(c) [8, 3]	(d)	[6, 5]
8.	MAX[A, MIN(A, B)] =		
	(a) A (c) $MIN(A, B)$	(d)	MAX(A,B)
9.	If $A \leq B$, then $MAX(A, B) = $		
		4	5

(d)

10. Fuzzy dynamic programming was formulated in

A + B

1970

1954

MIN(A, B)

(c)

the year

1969

1989

Page 2 Code No.: 10448 E

0 - [0 1]

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Write the fundamental properties of crisp set operations.

Or

- (b) Write short note on α cut and strong α cut.
- 12. (a) Prove that ${}^{\alpha}(A \cap B) = {}^{\alpha}A \cap {}^{\alpha}B$.
 - (b) Explain the representation of fuzzy sets.
- 13. (a) If C is a continuous fuzzy complement, then prove that C has a unique equilibrium.

Or

- (b) Explain the fuzzy unions (t conorms).
- 14. (a) Explain the Linguistic variables.

Or

- (b) Explain the lattice of fuzzy numbers.
- 15. (a) Explain the individual decision making.
 Or
 - (b) Explain the fuzzy ranking methods.

Page 3 Code No.: 10448 E