(6 pages) Reg. No.:	3. The set of all images of elements of A is called
Code No.: 30946 E Sub. Code: FECA 11	(a) relation (b) function (c) domain (d) range
B.C.A. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.	4. If every element of A is assigned to the same element of B, then the function said to be a
First Semester	
Computer Application	(a) identify function(b) one to one function(c) constant function(d) onto function
Elective — DISCRETE MATHEMATICS — I	5 5 5 10 1 9 Thurst reduce of this statement is
(For those who joined in July 2024 onwards)	5. $5+5=10 \lor 1 > 2$. Truth value of this statement is
Time: Three hours Maximum: 75 marks	(a) false (b) true
PART A — (10 × 1 = 10 marks)	(c) true or false (d) true and false
Answer ALL questions.	6. The contrapositive of $p \rightarrow q$ is the proposition
Choose the correct answer:	$ \begin{array}{ccc} \hline & & \\ \text{(a)} & q \to p & \\ \hline & & \\ \text{(b)} & \sim p \to \sim q \end{array} $
1. Let $R = \{(1, 3), (1, 7), (2, 3), (2, 7)\}$. Then $Dom(R) =$	(c) $\sim q \rightarrow p$ (d) $\sim q \rightarrow \sim p$
(a) {1, 1, 2, 2} (b) {3, 7, 3, 7} (c) {1, 2} (d) {3, 7}	7. If A is a square matrix of order n in which every non-diagonal element is zero and every diagonal element is 1, then the matrix A is called a
2. A path that begins and ends at the same vertex is called a	matrix.
(a) graph (b) edge	(a) zero (b) diagonal
(c) relation (d) cycle	(c) unit (d) scalar Page 2 Code No.: 30946 E

- 8. A square matrix A is called an involutory matrix if $A^2 =$.
 - (a) A^*A

(b) A^2A

(c) A^2

- (d) I
- 9. A path with no repeated vertex is called as
 - (a) path

- (b) self loop
- (c) simple path
- (d) trail
- 10. A graph with n vertices is ______ if either r or n or both are even.
 - (a) regular
- (b) r-regular

(c) cycle

(d) r-cycle

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

- 11. (a) (i) Define composition of relation.
 - (ii) Find the composition of the Relations $R_1 = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\}$ and $R_2 = \{(2, x), (4, y), (4, z), (6, z), (8, x)\}.$

Or

(b)
$$A = \{a, b, c\}$$
 and $M_R = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Find the

relation R defined on A.

Page 3 Code No.: 30946 E

12. (a) Let $f: R \to R$ be defined by f(x) = x + 1 and Let $g: R \to R$ be defined as $g(x) = 2x^2 + 3$. Find $f \circ g$ and $g \circ f$. Is $f \circ g = g \circ f$?

Or

- (b) The composition of any function with the identify function is the function itself. Prove it.
- 13. (a) Verity that the proposition $p \lor \sim (p \land q)$ is a tautology.

Or

(b) Show that

$$p \to (q \to r) \Leftrightarrow p \to (\sim q \lor r) \Leftrightarrow (\sim p \land q) \lor r$$
.

14. (a) Find the inverse of the matrix $\begin{pmatrix} 1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -6 \end{pmatrix}$

Or

- (b) Paraphrase addition of matrices and subtraction of matrices with example.
- 15. (a) Define bipartite graph. Show that the graph C_6 is bipartite.

Or

(b) Prove that the number of spanning subgraphs of a graph G with m vertices is 2^m .

Page 4 Code No.: 30946 E [P.T.O.]

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

- 16. (a) Let $A = \{1, 2, 3\}$. Check whether the following relations are reflexive, symmetric, anti symmetric or transitive.
 - (i) $R = \{(1, 1), (2, 2), (3, 3), (1, 3), (1, 2)\}$
 - (ii) $R = \{(1, 1), (2, 2), (1, 3), (3, 1)\}$
 - (iii) $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$

Or

- (b) Illustrate closure operations on relations with example.
- (a) Examine one to one function and onto function with example.

Or

(b) If $f: X \to Y$ and $g: Y \to Z$ are bijections then $(g \circ f)^{-1} = f^1 \circ g^{-1}$. Prove it.

Page 5 Code No.: 30946 E

18. (a) Show that $p \wedge (q \vee r)$ is equivalent to $(p \wedge q) \vee (p \wedge r)$.

Or

- (b) Determine the contrapositive, the converse and the inverse of the conditional statement "The Team A wins whenever it is raining".
- $\cos\theta = 0 \sin\theta$ is orthogonal. (a) Show that $-\sin\theta = 0 \cos\theta$

Determine the value of |A|.

Or

- (b) Discuss the following with example:
 - (i) symmetric matrix and skew-symmetric matrices.
 - (ii) complex matrix
 - (iii) conjugate matrix.
- (a) Let G be a simple graph with 12 edges. If G has 6 vertices of degree 3 and the rest of the vertices have degree less than 3, then find the
 - (i) minimum number of vertices
 - (ii) maximum number of vertices.

Or

(b) State and prove the handshaking theorem.

Page 6 Code No.: 30946 E