None

(d)

(a)

(c) $\frac{1}{2}C\theta$

Soap	bubble	is sp	herical	in	shape	due	to
(a)	viscosity	•	(b)	sur	face tens	sion	
(c)	elasticity		(d)	non	ie		
The	unit for vi	scosity i	is		 .		
(a)	Nsm^2		(b)	Nsr	n^{-2}		
(c)	$Ns^{-1}m^2$	(d)	None				
Sim _l moti	ole pendul on.	um is a	n exam	ple f	or ——		
(a)	unharmonic		(b)	forced vibrations			
(c)	simple harmonic		(d)	non	ie		
The	distance	betwee	n two	succ	essive	nodes	is
(a)	λ	•	(b)	21	4		
(c)	$\lambda / 2$		(d)	0			
	ton's law o		_			find t	the
(a)	good cond	ductor	(b)	bad	conduc	tor	
(c)	liquid		(d)	non	ie		
		$\mathbf{p}_{\mathbf{a}}$	σο 9 ($^{\sim}$ od	No ·	20215	k R

Page 2 Code No.: 30315 B

8.	_	l breeze and see	e are formed due to				
	(a)	conduction	(b)	convection			
	(c)	radiation	(d)	none			
9.	In Fresnel diffraction the shape of the incident wave front is ————.						
	(a)	plane	(b)	spherical			
	(c)	elliptical	(d)	none			
10.		path difference for destructive interference veen two beams is ————.					
	(a)	$n\lambda$	(b)	$(n+1)\lambda/2$			

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

(d) none

 $(2n-1)\lambda/2$

(c)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Derive the expression for work done in stretching a wire.

Or

(b) Derive the expression for the bending moment of beam.

Page 3 Code No.: 30315 B

12. (a) Derive the expression for excess pressure in a soap bubble.

Or

- (b) Discuss the analogy between liquid flow and current flow.
- 13. (a) Define simple harmonic motion. What re the characteristics of simple harmonic motion?

Or

- (b) What are Lissajou's figures? How they are produced?
- 14. (a) Derive the expression for thermal conductivity of a solid.

Or

- (b) What are the important features of black body radiation?
- 15. (a) Obtain the conditions for constructive and destructive interference.

Or

(b) Explain the principle of air-wedge.

Page 4 Code No.: 30315 B

[P.T.O]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Derive the relation between three elastic modulii.

Or

- (b) Explain the determination of young's modulus of a beam by uniform bending method.
- 17. (a) Derive the Poiseulle's formula for the coefficient of viscosity.

Or

- (b) Discuss the experimental determination of coefficient of viscosity of highly viscous liquid.
- 18. (a) Discuss the resultant motion of a particle acted upon by two simple harmonic motions perpendicular to one another.

Or

(b) Explain Melde's string method of determining the frequency of a tuning fork by longitudinal model.

Page 5 Code No.: 30315 B

19. (a) Discuss the Lee's disc method of determining the thermal conductivity of a bad conductor.

Or

- (b) Explain in detail the experimental verification of Newton's law of cooling.
- 20. (a) Discuss the determination of thickness of thin wire using air-wedge arrangement.

Or

(b) Explain in detail the production and detection of plane polarized light.

Page 6 Code No.: 30315 B