(7 pages)

Reg. No. :

Code No.: 7857

Sub. Code: PPHM 12

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019.

First Semester

Physics

Core - MATHEMATICAL PHYSICS - I

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL the questions.

Choose the correct answer:

- 1. The curl of a vector field can be represented as
 - (a) Curl A
- (b) ∇×A

(c) ∇.A

- (d) ∇²A
- 2. A field is irrotational if -
 - (a) gradA = 0
- (b) div A = 0
- (c) curl A = 0
- (d) $\nabla^2 A = 0$

3. The eigen values of the matrix $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

are —

(a) $e^{\pm i\theta}$

(b) e ±2i6

(c) e^{±3iθ}

- (d) e ±i0/2
- 4. Which one of the following matrices is Hermitian?
 - (a) $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$
- (b) $\begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$
- (c) $\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$
- (d) $\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$
- 5. The value of $J_{-1/2}\left(\frac{\pi}{2}\right)$ is
 - (a) 0

(b) 1

(c) $\frac{\pi}{2}$

- (d) $\frac{2}{n}$
- 6. The value of $L_1(x)$ is
 - (a) 1

(b) 1−x

(c) 1+x

(d) 0

- 7. Fourier transform of which of the following functions does not exit?
 - (a) $e^{-|x|}$

(b) xe-x

(c) ex2

- (d) e^{-x^2}
- 8. The average of the function $f(x) = \sin x$ in the interval $(0, \pi)$ is ———
 - (a) $\frac{1}{2}$

(b) $\frac{2}{\pi}$

(c) $\frac{1}{\pi}$

- (d) $\frac{4}{\pi}$
- 9. Laplace transform of $J_0(t)$ is
 - (a) $\frac{1}{S}$

(b) $\frac{1}{\sqrt{S^2+1}}$

(c) $\frac{1}{S^2+1}$

- (d) $\frac{1}{\sqrt{1-S^2}}$
- 10. Laplace transform of cosat is
 - (a) $\frac{s}{s^2 + a^2}$

(b) $\frac{a}{s^2 + a^2}$

(c) $\frac{a}{s^2 - a^2}$

(d) $\frac{s}{s^2 - a^2}$

Page 3 Code No.: 7857

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Find the value of a,b and c such that F = (3x - 4y + 9z)i + (cx + 5y - 2z)j + (x - by + 7z)k is irrotational.

Or

- (b) Using Green's theorem evaluate $\int_C (x^2y \, dx + x^2 \, dy) \quad \text{where} \quad C \quad \text{is boundary}$ described counter-clockwise of the triangle with vertices (0,0),(1,0),(1,1).
- (a) Show that σ_x² = σ_y² = σ₂² = 1 where σ_x, σ_y and σ₂ are Pauli spin marices.

Or

- (b) Show that the eigen values of a Hermitian matrix are real.
- 13. (a) Prove that $x J'_x(x) = -n J_n(x) + x J_{n-1}(x)$.

Or

(b) Prove that $(n+1) L_{n+1}(x) = (2n+1-x)$ $L_n(x) - nL_{n-1}(x)$.

Page 4 Code No.: 7857

PTOL

State and prove modulation theorem of Fourier transform.

Or

- (b) Find the sine transform of $\frac{e^{-ax}}{x}$.
- Find Laplace transforms of 15.
 - (i) cosh(at)
 - (ii) sin at .

Or

Find the inverse Laplace transform of $\frac{e^{-ss}}{s^2+1}$.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. State and prove Gauss divergence theorem.

Or

Show that $r^n \vec{r}$ is an irrotational vector for any value of n, but is solenoidal only if n = -3 \vec{r} is position vector of a point.

> Code No.: 7857 Page 5

State and prove Cayley Hamilton theorem.

Or

- Find the eigen values any eigen vectors of the 3 1 4 following matrix 0 2 6.
- Obtain the series solution of Languve 18. differential equation.

Or

- Obtain the series solution of Bessel differential equation.
- Find the Fourier transform of e^{-r^2/a^2} where a 19. is a constant and $r = \sqrt{x^2 + y^2 + z^2}$.

Or

(b) Find the cosine transform of a function of x which is unity for 0 < x < a and zero for $x \ge a$ what is the function whose cosine transform

is
$$\sqrt{\frac{2}{\pi}} \frac{\sin ap}{p}$$
.

Page 6 Code No.: 7857

(a) State and prove extension theorem is Laplace 20. transform.

Or

Obtain Laplace transform of the function $f(t) = \sinh at \sin at.$