(6 pages)

Reg. No. :

Code No.: 10070 E Sub. Code: SMMA 64/
AMMA 64

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023

Sixth Semester

Mathematics — Core

DYNAMICS

(For those who joined in July 2017-2020)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The time of flight of a projectile is
 - (a) $\frac{u\sin 2\alpha}{\sigma}$
- (b) $\frac{u^2 \sin^2 \alpha}{\sigma}$
- (c) $\frac{2u\sin\alpha}{g}$
- (d) $\frac{u^2 \sin^2 a}{2g}$

- 2. The maximum horizontal range of the projectile is
 - (a) $\frac{u}{g}$
- (b) $\frac{u^2}{g}$
- (c) $\frac{u \sin a}{g}$
- (d) $\frac{u^2 \sin \theta}{g}$
- 3. If the sphere is perfectly elastic e=1, then the loss of Kinetic energy is ———
 - (a) 0
- (b) 1
- (c) $u\sin\alpha$
- (d) $\frac{1}{2}\cos^2\alpha$
- 4. The ball is perfectly elastic if ———
 - (a) v = 0
- (b) v = u
- (c) u = 0
- (d) $u = \sin \alpha$
- 5. The period of simple harmonic motion is
 - (a) $\frac{2\pi}{\mu}$
- (b) $\frac{2\pi}{\sqrt{\mu}}$
- (c) $\frac{\pi}{\sqrt{\mu}}$
- (d) $\frac{\pi}{\mu}$

Page 2 Code No.: 10070 E

- The displacement of simple harmonic motion is
 - $x = a \cos \sqrt{\mu t}$
- (b) $x = a \cos t$
- $x = \cos \sqrt{\mu t}$
- (d) none of these
- The radial component of velocity is
 - (a)

(c)

- (d) $\dot{r}\dot{\theta}$
- The transverse component of acceleration is 8.

 - (a) $\frac{1}{r}\frac{d}{dt}(r\dot{\theta})$ (b) $\frac{1}{r}\frac{d}{dt}(r^2\theta)$
 - (c) $\frac{1}{r}\frac{d}{dt}(r^2\dot{\theta})$ (d) $\frac{1}{r}\frac{d}{dt}(r\theta)$
- The differential equation of a central orbit is
 - (a) $u + \frac{du}{d\theta} = \frac{p}{h^2 u^2}$ (b) $u^2 + \frac{d^2 u}{d\theta^2} = \frac{p}{h^2 u^2}$
 - (c) $u + \frac{d^2u}{d\theta^2} = \frac{p}{h^2u^2}$ (d) $u^2 + \frac{d^2u}{d\theta^2} = \frac{p}{hu}$

Page 3 Code No.: 10070 E

- Pedal equation of the circle is
 - r = 2ap
- $r^2 = 2a^2p$
- (d) $r = 2a^2p$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

Find the horizontal range of a projectile.

Or

- Derive the range on an inclined plane.
- Explain the Newton's experimental law. 12.

Or

- Explain the direct impact of two smooth spheres.
- Write a short note on simple harmonic 13. motion.

Or

- Explain the change of origin in SHM.
- Derive the radial and transverse components (a) 14. of velocity.

Or

Explain the equation of motion in polar coordinates.

Page 4 Code No.: 10070 E

[P.T.O.]

15. (a) Explain the (p-r) equation of the central orbit.

Or

(b) Derive the (p-r) equation of the parabola.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

16. (a) Show that the path of a projectile is a parabola.

Or

- (b) Show that for a given velocity of projection the maximum range down an inclined plane of inclination α bears to the maximum range up the inclined plane the ratio $\frac{1+\sin\alpha}{1-\sin\alpha}.$
- 17. (a) Find the loss of kinetic energy due to oblique impact of two smooth spheres.

Or

(b) A smooth sphere of mass m impinges obliquely on a smooth sphere of mass M which is at rest. Show that if m = eM, the directions of motion after impact are at right angles.

Page 5 Code No.: 10070 E

18. (a) Explain the geometrical representation of a simple harmonic motion.

Or

- (b) Show that the energy of a system executing SHM is proportionaly to the square of the amplitude and of the frequency.
- 19. (a) Explain the equiangular spiral.

Or

- (b) Explain the velocity and acceleration in polar coordinates.
- (a) Explain the differential equation of central orbits.

Or

(b) Find the law of force towards the pole under which the curve $r^n = a^n \cos n\theta$.

Page 6 Code No.: 10070 E