Reg. No. :

Code No.: 6318 Sub. Code : PMAM 33

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

Third Semester

Mathematics — Core

ADVANCED ALGEBRA — I

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answers :

- 1. If V is a vector space than its dual space is
 - (a) Hom (V,V) (b) Hom (F,V)
 - (c) Hom (V,F) (d) Hom (F,F)

(7 Pages)

2. An orthonormal set consists of	of
-----------------------------------	----

- (a) zero vector
- (b) unit vector
- (c) linearly dependent vector
- (d) inner products
- 3. If $S, T \in A(V)$ and S is regular then r(ST) =
 - (a) r(S) (b) r(T)
 - (c) 1 (d) 0
- 4. If $\lambda 1$ is singular then λ is
 - (a) also singular (b) regular
 - (c) an eigen-value (d) zero
- 5. The invariants of $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ are (a) 1, 1 (b) 5, 4 (c) 2, 1 (d) 3, 2

Page 2 Code No. : 6318

- 6. If W is a subspace of V and $T \in A(V)$ are $WT \subset W$, then W
 - (a) equal T
 - (b) variant under T
 - (c) invariant under T
 - (d) has no other subspaces
- 7. Trace of A is defined when A is a matrix.
 - (a) triangular (b) symmetric
 - (c) square (d) skew-symmetric
- 8. If the matrix *B* is obtained from *A* by a permutation, which is odd, of the rows of *A* then det *A* =
 - (a) det B (b) $-\det B$
 - (c) 0 (d) 1
- 9. If T is A(V) is Hermitian then all its characteristic roots are
 - (a) real (b) imaginary
 - (c) 0 (d) 1
 - Page 3 Code No. : 6318

- 10. If all the characteristic roots of a normal transformation are of absolute value 1, then it is
 - (a) identity (b) symmetric
 - (c) transitive (d) unitary

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b)

11. (a) Show that if $\dim V = m$ then $\dim Hom(V,V) = m^2$.

Or

- (b) State and prove the Schwartz inequality on inner product spaces.
- 12. (a) If $S,T \in A(V)$ and if S is regular, prove that T and STS^{-1} have the same minimal polynomial.

Or

(b) If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.

> Page 4 Code No. : 6318 [P.T.O]

13. (a) If M, of dimension m, is cyclic with respect to T, then prove that dim MT^k is m-k.

Or

- (b) Suppose $V = V_1 \oplus V_2$, where V_1, V_2 are subspaces of V invariant under T. If T_1T_2 are linear transformation induced by T on V_1 and V_2 , with minimal polynomials $p_1(x)$ and $p_2(x)$, respectively, show that the minimal polynomial of T is the lcm of $p_1(x)$ and $p_2(x)$.
- 14. (a) Prove that if all the elements in one row of A in F_n are multiplied by τ in F, then det A is multiplied by τ.

Or

- (b) If two elements of *A* are equal, show that $\det A = 0$, where A is an m × n matrix.
- 15. (a) Prove that the linear transformation T on V is unitary if and only if it takes an orthonormal basis of V onto an orthonormal basis of V.

\mathbf{Or}

(b) If T is Hermitian and $vT^k = 0$ for all $k \ge 1$ then prove that vT = 0.

Page 5 Code No. : 6318

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If there is a homogeneous system of m equations in n unknowns with n > m, prove that if has a non-trivial solution.

Or

- (b) If W is a subspace of a finite dimensional vector space V, then prove that V is the direct sum of W and its orthogonal complement.
- 17. (a) If λ₁,λ₂,...,λ_k in F are distinct characteristic roots of T in A(V) and is v₁,v₂,...,v_k are characteristic vectors belonging to λ₁,λ₂,...,λ_k respectively, show that v₁,v₂,...,v_k are linearly independent.

\mathbf{Or}

- (b) Show that A(V) and F_n are isomorphic algebras.
- 18. (a) If $T \in A(V)$ has all its characteristics roots in F, show that this is a basis of V in which the matrix of T is triangular.

 \mathbf{Or}

Page 6 **Code No. : 6318**

- (b) If $T \in A(V)$ is nilpotent, prove that there exists a subspace of W of V, invariant under T, such that $V = V_1 \oplus W, V_1$ is spanned by v, vT, \dots, vT^{n_1-1} .
- 19. (a) If F is a field of characteristic 0, and if $trT^{i} = 0$ for all $i \ge 1$, prove that T is nilpotent.

Or

- (b) For A, B in F_n , prove that $\det(AB) = \det(A) \det(B)$.
- 20. (a) If $\{v_1, v_2, ..., v_n\}$ is an orthonormal basis of Vand if (a_{ij}) is the matrix of T in A(V), prove that the matrix of T^* in this basis is (β_{ij}) where $\beta_{ij} = \overline{\alpha_{ij}}$.

Or

(b) If N is a normal linear transformation on V, prove that there exists an orthonormal basis in which the matrix of N is diagonal.

Page 7 Code No. : 6318