(6 pages)

Reg. No. :.....

Code No. : 20579 E Sub. Code : SMMA 62

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester

 ${\it Mathematics-Core}$

NUMBER THEORY

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. The value of 1 + 2 + 3 + ... + n is _____
 - (a) $\frac{n(n+1)}{2}$ (b) $\frac{n(n+1)}{3}$ (c) n(n+1) (d) $\frac{n(n+1)}{6}$

2. In the Pascal's triangle, the $(k+1)^{th}$ number in the n^{th} row is

(a)
$$\binom{n}{k}$$
 (b) $\binom{n}{k+1}$
(c) $\binom{n}{k-1}$ (d) $\binom{n}{k+2}$

3. The gcd (119, 272) is

(a)	27	(b)	9
(c)	17	(d)	57

- 4. For any integer $k \neq 0$, gcd (ka, kb) = ?
 - (a) $k \gcd(a, b)$ (b) $|k| \gcd(a, b)$
 - (c) gcd(a, b) (d) $k^2 gcd(a, b)$
- 5. According to division algorithm, every positive even integer can be uniquely written as
 - (a) 4n+1 (b) 4n+3
 - (c) 4n or 4n+2 (d) none of these

6. Which of the following is irrational?

- (a) $3^{\frac{1}{2}}$ (b) $11^{\frac{1}{2}}$
- (c) $4^{\frac{1}{4}}$ (d) All the above
- 7. If 5^{48} is divided by 12, then the remainder is
 - (a) 1 (b) 2
 - (c) 4 (d) 9

Page 2 Code No. : 20579 E

- 8. A solution of the linear congruence $5x \equiv 2 \pmod{26}$ is
 - (a) 10 (b) 12
 - (c) 14 (d) 16
- 9. The least odd prime for which the congruence $(p-1)! \equiv -1 \pmod{p^2}$ holds good is
 - (a) 5 (b) 7
 - (c) 11 (d) 13
- 10. The number of pseudo primes is
 - (a) 0
 - (b) 1
 - (c) more than 1 but finite
 - (d) infinite

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Prove that $1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{4n^3 - n}{3}$ $\forall n \ge 1.$

 \mathbf{Or}

(b) Define a triangular number. Give an example prove that the sum of the first n natural numbers is triangular.

Page 3 Code No. : 20579 E

12. (a) State and prove the Euclid's Lemma.

Or

- (b) If gcd(a, b) = 1 prove that $gcd(a+b, a^2-ab+b^2) = 1$ or 3.
- 13. (a) If n > 1, show that $n^2 + 4$ is composite.

 \mathbf{Or}

- (b) Verify that the integers 1949 and 1951 are twin primes.
- 14. (a) Prove that for arbitrary integers a and b, $a \equiv b \pmod{n}$ if and only if a and b leave the same non-negative remainder when divided by n.

Or

- (b) Find the last two digits of the number. 9^{9^9}
- 15. (a) State and prove Fermat's Theorem.

Or

(b) If P is a prime, prove that for any integer $a, P | a^p + (p-1)!$ and $P | (p-1)! a^p + a$.

Page 4 Code No. : 20579 E [P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Establish the binomial theorem.

Or

- (b) (i) State and prove Archimedean Property.
 - (ii) State and prove the first principle of finite induction.
- 17. (a) State and prove the Division Algorithm.

Or

- (b) Solve the linear Diophantine equation 180x + 75y = 9000.
- 18. (a) (i) State and prove the fundamental theorem of Arithmetic.
 - (ii) Prove that $48 \mid m(m^2 + 20)$.

Or

(b) Discuss about the Goldbach conjecture.

Page 5 Code No. : 20579 E

19. (a) (i) If, $ca \equiv cb \pmod{n}$ prove that $a \equiv b \left(\mod \frac{n}{d} \right)$ when d = G.C.D. (c.n.).

> (ii) What is the remainder when the sum 1! + 2! + 3! + ... + 99! + 100! is divided by 12.

> > Or

- (b) If (a, m) | b prove that $ax \equiv b \pmod{m}$ has exactly (a, m) solutions.
- 20. (a) If P is a prime, then $a^P \equiv a \pmod{P}$ for any integer a.

Or

(b) If *n* is an odd pseudo prime, then prove that $Mn = 2^n - 1$ is larger one.

Page 6 Code No. : 20579 E