PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 600 words.

 (a) Define dispersive power. Derive the condition to produce deviation without dispersion.

Or

- (b) Explain the construction and working of Ramsden eyepiece.
- (a) Describe Michaelson Interferometer with a neat diagram.

O

- (b) Discuss in detail the determination of thickness of thin wire using air-wedge.
- 18. (a) Define Fresnel diffraction. How will you determine the wavelength of light using it?

Or

- (b) Define Fraunhofer diffraction. How will you determine the wavelength of light using it?
- (a) Discuss in detail the production and detection of circularly polarized light.

Or

- (b) Define acceptance angle and numerical aperture. Derive the expressions for them.
- 20. (a) Describe the construction and working of CO₂ laser.

Or

(b) Describe the construction and working of a dye laser.

Page 4 Code No. : 41376 E

Reg.	No.	:	
***	*		***************************************

Code No.: 41376 E Sub. Code: SMPH 22

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Second Semester

Physics - Main

OPTICS

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- - (a) distortion
- (b) dispersion
- (c) scattering
- (d) bending
- Huygen's eyepiece is a fully free from aberration
 - (a) coma
 - (b) astigmatism
 - (c) chromatic aberration
 - (d) none
- In interference, the expression for band width (β)
 is, (D-distance between slit and screen, d-distance
 between the slits)
 - (a) $\frac{\lambda D}{d}$

(b) $\frac{\lambda}{dD}$

(c) $\frac{\lambda d}{D}$

(d) None

(a)	Same phase		
-	Same freque		
(c)	Different fre None	quency	
In			zone differ from
(a)	$\pi/4$	(b)	π/2
(c)	π	(d)	None
In a	Fresnel diff		he incident waves
(a)	Plane	(b)	Spherical
(c)	Elliptical	(d)	None
A h	alf wave plate	produces	a phase differenc
(a)	π	(b)	$\pi/2$
(c)	2.14	(d)	None
	acceptance an is the numeri		
(a)	sin (NA)	(b)	$\sin^{-1}(NA)$
(c)	$\cos^{-1}(NA)$	(d)	None
The	laser output is	s due to —	emissio
(a)	spontaneous	(b)	stimulated
(c)	direct	(d)	none
Гhе	efficiency of C	O ₂ laser is	around —
(a)	100%	(b)	40%
(c)	10%	(d)	Zero
		Page 2	Code No. : 41370

PART B - (5 × 5 = 25 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) What is Astigmatism? How it is eliminated?

Oi

- (b) Explain the working of prism binocular.
- 12. (a) When two waves are superposing, find the amplitude of the resultant wave analytically?

Or

- (b) Explain the testing of plainness of surfaces.
- 13. (a) Define diffraction. What are the types of diffractions?

Or

- (b) What is a zone plate? How does it differ from a convex lens?
- (a) Define: Quarter wave plate and Half wave plate.

Or

- (b) Distinguish between single mode and multimode fibers.
- 15. (a) Give any five application of laser.

Or

(b) Give any five applications of Holography.

Page 3 Code No. : 41376 E