(6 pages)

Reg. No. :

Code No. : 5400 Sub. 6

Sub. Code: ZPHM 42

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023.

Fourth Semester

Physics - Core

NUCLEAR AND PARTICLE PHYSICS

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Meson theory of nuclear forces was given by
 - (a) Heisenberg
 - (b) Yukawa
 - (c) Wigner
 - (d) Bartlett's

- 2. The scattering cross-section of an impenetrable sphere of radius a, in the limit of zero energy can be expressed as
 - (a) $4 \pi a^2$

(b) $4 \pi a^3/3$

(c) $4 \pi a^3$

- (d) $4 \pi a^{1/3}$
- 3. The spin of α particles is
 - (a) $\frac{1}{2}$

(b) 0

(c) 1

- (d) 2
- 4. The wave mechanical theory of α -particle can give by
 - (a) Fermi
 - (b) Geiger and Nuttall
 - (c) Gamow
 - (d) Rutherford
- 5. The magic numbers are
 - (a) 2, 8, 20, 28, 50, 82, 126
 - (b) 2, 4, 8, 18, 52
 - (c) 20, 40, 80, 126
 - (d) 3, 6, 9, 12, 15

Page 2 Code No.: 5400

6.	The nuclear energy levels were introduced by				
	(a)	Liquid drop m	nodel		
	(b) Shell model				
	(c)	Collective mo	del		
	(d)	Radioactive m	nodel		
7.	The unit of reaction cross-section is				
	(a)	barn	(b)	fermi	
	(c)	rather ford	(d)	m^{-1}	
8.		is prot	o type fast	breeder reactor.	
	(a)	KAIGA	(b)	HNPF	
	(c)	MAPS	(d)	BHAVINI	
9.	The	reaction	$\mu^+ \rightarrow e^+ +$	$V_e + \overline{V}_{\mu}$ proves th	e
	con	servation of —		— number.	
	(a)	Lepton	(b)	Baryon	
	(c)	Strangeness	(d)	Isospin	
10.	The carrier particle of strong interaction is				
	(a)	Photon	(b)	quark	
	(c)	graviton	(d)	gluon	
			Page 3	Code No. : 540	0
			1 age o	Coue 110 940	-

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Derive an expression for magnetic dipole moment of a deuteron.

Or

- (b) Discuss in detail the excited states of the deuteron and prove that no Bound state exists for l > 0.
- 12. (a) Give a short notes on nuclear isomerism.

Or

- (b) Plot the energy spectrum of β -decay and explain why it is continuous Spectrum.
- 13. (a) Write a short note on Schmidt line.

Or

- (b) Discuss the main features of collective model for atomic nucleus. What are the vibrational and rotational states of the nucleus?
- 14. (a) Give a brief account on nuclear chain reaction.

Or

(b) Explain four-factor formula regarding nuclear fission in an assembly.

Page 4 Code No.: 5400

[P.T.O.]

15. (a) What do you understand by the classification of elementary particles?

Or

(b) Explain the fundamental interactions among elementary particles.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Discuss in detail the n-p scattering at low energies and derive an expression for total scattering cross-section using partial wave analysis.

Or

- (b) Explain in detail about the meson theory of nucleus force.
- 17. (a) Give a brief account of Fermi's theory of β-decay. How far this theory been verified experimentally?

Or

- (b) Give a brief note on internal conversion.
- 18. (a) Give an account of Bohr-wheeler theory of nuclear fission. Discuss the condition of critical its of a nuclear reactor.

Or

Page 5 Code No.: 5400

- (b) What are magic numbers? How magic numbers and energy levels were Predicted by single particle Shell model?
- 19. (a) Describe the compound nucleus theory of nuclear reactions.

Or

- (b) Discuss in detail the nuclear cross-section and derive the expression for total cross section.
- 20. (a) Discuss (i) CPT theorems (ii) Meson octet.

Or

(b) Obtain the Gellmann - Okubo mass formula.

Page 6

Code No.: 5400